Prospects of Higgs Physics as a window to the electroweak phase transition

> 王连涛 University of Chicago

电弱相变与希格斯物理专题研讨会, July 31. 2020

Higgs is the focus of particle physics

European strategy for particle physics:

- The Higgs (discovered at the LHC) is a unique particle that raises profound questions about the fundamental laws of nature.
- Higgs properties study in itself a powerful experimental tool to look for answers.
 - Electron-positron collider as Higgs factory
- Higgs boson pair production is key to understanding the fabric of the universe.

Why is Higgs important?

- It gives mass to all the elementary particles.
- True. But more importantly:
- It is at the center of intriguing mysteries/puzzles
 - Holds the key to new discoveries!

Possible links with inflation, dark energy, ...

- Overview.
- A lot of work in the area.
 - Highlight several interesting directions.

More details, the rest of the workshop

Why is Higgs puzzling?

particle	spin	
quark: u, d,	1/2	
lepton: e	1/2	
photon	1	
W,Z	1	
gluon	1	
Higgs	0	h: a new kind of elementary particle

The "simplest" particle? Far from it!

"Simple" = puzzling

$$V(h) = \frac{1}{2}\mu^2 h^2 + \frac{\lambda}{4}h^4$$
$$\langle h \rangle \equiv v \neq 0 \rightarrow m_W = g_W \frac{v}{2}$$

5 (26)

"Simple" = puzzling

$$V(h) = \frac{1}{2}\mu^2 h^2 + \frac{\lambda}{4}h^4$$
$$\langle h \rangle \equiv v \neq 0 \quad \rightarrow \quad m_W = g_W \frac{v}{2}$$

5 (26)

Parameters not predicted by theory. Can not be the complete picture.

"Simple" = puzzling

$$V(h) = \frac{1}{2}\mu^2 h^2 + \frac{\lambda}{4}h^4$$
$$\langle h \rangle \equiv v \neq 0 \rightarrow m_W = g_W \frac{v}{2}$$

simplicity = lack₂₆of tools No symmetry, no additional information!

In contrast, spin-1/2, spin-1, and spin-2, additional tools (symmetries) available to understand their couplings.

"Simple" = puzzling

$$V(h) = \frac{1}{2}\mu^2 h^2 + \frac{\lambda}{4}h^4$$
$$\langle h \rangle \equiv v \neq 0 \quad \rightarrow \quad m_W = g_W \frac{v}{2}$$

simplicity = lack₂₀of tools No symmetry, no additional information!

In contrast, spin-1/2, spin-1, and spin-2, additional tools (symmetries) available to understand their couplings.

"Simple" = puzzling

$$V(h) = \frac{1}{2}\mu^2 h^2 + \frac{\lambda}{4}h^4$$
$$\langle h \rangle \equiv v \neq 0 \rightarrow m_W = g_W \frac{v}{2}$$

simplicity = lack₂₆of tools No symmetry, no additional information!

Central question of particle physics: What determines these parameters?

"Simple" = puzzling

$$V(h) = \frac{1}{2}\mu^2 h^2 + \frac{\lambda}{4}h^4$$
$$\langle h \rangle \equiv v \neq 0 \quad \rightarrow \quad m_W = g_W \frac{v}{2}$$

simplicity = lack₂₆of tools No symmetry, no additional information!

Central question of particle physics: What determines these parameters?

Unique feature: Self coupling

Not seen before in nature!

Understanding this physics is also directly relevant to one of the m damental questions we can ask about *any* symmetry breaking phene which is what is the order of the associated phase transition. How experimentally decide whether the electroweak phase transition in t universe was second order or first order? This qu**Sseiolao ilina flotta** <u>Ous next step following the Higgs discovery: having understood wha</u> Tuesday cliect? The associated an experimental pro-

Simplicity rightarrow greater unknown.

- Which one is the right picture?

How do we find out?

And more, later in this talk

What e^{GeV}_{eV} the physics consequences? Nature of electroweak phase transition

 $\langle h
angle = 246\,{
m GeV}$

which one?

Wide open, likely place for new physics

When did it happen?

When did it happen?

When did it happen?

The corner stone of modern cosmology

The corner stone of modern cosmology

Well understood, comso/astrophysical observation + laboratory measurements.

Lead to the establishment of modern cosmology

EW phase transition, a new milestone

An important early universe event. → Cosmological observations + Lab measurement of Higgs properties

Cosmological observations

21 See also Tao Liu's talk for CMB signal

Cosmological observations

Probes from gravitational waves.

Cosmological observations

Why is matter > anti-matter?

1st order EW phase transition is a natural stage for generating the baryonic asymmetry

Michael Ramsey-Musolf, Ke-pan Xie's talk

Higgs physics as a window

See also Jiang-Hao Yu's talk

Nature of the Higgs field

What we know from LHC LHC upgrades won't go much further

"wiggles" in Higgs potential

Wednesday, August 13, 14 Big difference in triple Higgs coupling

1st order phase transition \Rightarrow large modification of trilinear coupling

Triple Higgs coupling at 100 TeV collider At FCC-hh or SppC

Precision on the self-coupling

assuming QCD can be measured from sidebands

nominal background yields:

$\delta \kappa_{\lambda}(\text{stat}) \approx 3.5$	%
$\delta \kappa_{\lambda}(\text{stat + syst}) \approx$	6 %

varying (0.5x-2x) background yields:

$$\delta \kappa_{\lambda}(\text{stat}) \approx 3 - 5 \%$$

Talk by Michele Selvaggi at 2nd FCC physics workshop

But, there should be more

$$V(h) = \frac{m^2}{2}h^2 + \lambda h^4 + \frac{1}{\Lambda^2}h^6 + \dots$$

- Ist order EW phase transition means there is new physics close to the weak scale.
- Can be difficult to discover at the LHC.
 - ▶ Maybe only couple weakly to the Higgs.
- Will leave more signature in Higgs coupling.

For example

$m^2 h^{\dagger} h + \tilde{\lambda} (h^{\dagger} h)^2 + m_S^2 S^2 + \tilde{a} S h^{\dagger} h + \tilde{b} S^3 + \tilde{\kappa} S^2 h^{\dagger} h + \tilde{h} S^4$

shift in h-Z coupling

 $\delta_{Zh} \sim c \frac{v^2}{m_S^2}$

For example

$m^2 h^{\dagger} h + \tilde{\lambda} (h^{\dagger} h)^2 + m_S^2 S^2 + \tilde{a} S h^{\dagger} h + \tilde{b} S^3 + \tilde{\kappa} S^2 h^{\dagger} h + \tilde{h} S^4$

Figure 6. The region **Space where a strong** Singlet benchmark model Also shown are the fractions

Higgs coupling at the CEPC

- A large step beyond the HL-LHC.
 - Can achieve per-mil level measurement.
 - Determination of the Higgs width.

Probing EWSB at higgs factories

Interesting limit of singlet model

Interesting limit of singlet model

both can be probed well at CEPC

hat h2 is the mostly minuted et diese state writh have been der different and the second s GeV $< m_2$. We astricipate VEVisiting then case be zero by supproprion by supproprion of the sing We will also assume that h_2 is the mostly singlet-like state, with h_1 Projected Constraines with $m_1 = 125 \text{ GeV} \gtrless \log 2$ and m_1 with $m_1 = 125 \text{ GeV}$ state in future work

More elaborated model

Within composite Higgs models

Should be able to probe at both the Higgs factories and hadron colliders.

Ligong Bian and Ke-pan Xie's talks

Conclusions

- Electroweak phase transition is a key aspect of the electroweak symmetry breaking.
- Will be our next goal post for understanding early universe.
 - Can set the stage for baryogenesis
 - ▶ Rich signals: gravitational wave, PBH, etc.
- Study the Higgs boson will give an indispensable window into EW phase transition.
- Huge potential for the synergy of future colliders and cosmological observations!