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Strong |st PT

Phase transition during the
cooling of the universe

Bubble nucleation
during the |st order PT.



Strong |st PT
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Strong |st PT
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low scale PT Very roughly speaking
PTA real data peak frequency scales with temperature e



Strong |st PT

Plank scale
GUT, Leptogenesis scale LIGO
All possible spontaneous
TeV scale P P .
symmetry breaking
corresponds to the
EWV scale cosmic phase transition

sub-GeV scale PTA
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Motivation for the high scale PT

Typically the PT that LIGO is good to
detect is at the PeV scale!

Some gauge extension of SM?

High scale SUSY?




Current LIGO SGWVB search
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Analysis of LIGO (SGVVB)

What is the SGVVB?

typically the gravitational radiation produced by an extremely large number of
weak, independent, and unresolved gravitational wave sources.

No real shape, looks like noise
define background energy density spectra

de fGW
dimensionless ‘—[QGW (f) j] / % energy density o

contained in the range

, df
critical energy density to (f, f +df)

close the Universe

*For the LIGO and Virgo frequency bands, most theoretical models of
stochastic background are characterized as a power law spectrum,

.

f » a=0 (cosrﬁologically rﬁotivated) and

QGW ( f ) : — a = 3 (astrophysically motivated)
m ~__ a = 2/3 (for compact binary coalescence)
a constant characterizing the amplitude of an arbitrary reference freq.

SGWB in a given frequency band
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Analysis of LIGO (SGVVB)

Comparison between inspiral GW & SGWB

Waveform Well-predicted Totally random
Direction From specific location From all directions
Search method Template search in time Cross correlation from two
domain detector signals in
frequency domain
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No real shape, looks like noise @



Analysis of LIGO (SGVVB)

How to detect the SGVVB?

Looking for the correlation of the TWO (far away?) detector!

LIGO detector configuration

Stable correlated

signal from the
SGWBs

No stable noise from
the far away detector.

13,

H1 in Hanford, L1 in Livingston.



Detection of SGVVB

e Estimator for () g - [inite-time approximation measurement from two

i detectors : .
to delta function filter function, to optimize

o 00 ! - : : i
§ — /_oo df /—oc df’ BT(f o f,E’{(f)gQ(f’)p(f’)]/the signal-to-noise ratio

overlap reduction function one-sided power spectrum

Q(f) 2’7& f@?ﬁ v}gl {l |}| ;@ of detector 1
normalization constant, to make (ﬁ:(f)f%(f,)) - 55(f o f,) PZ(|f|)

() = Qg

Once we know the frequency dependency of stochastic background Qg (f), Q(f) will be
also determined.

We can optimize it for PT




Detection statistics

* Expectation value:
3H¢

e p=(S) = 28T (2 df |17 Qg (DY UFDE)

e Variance:

02 = (§7) = ($)? = (%) ~ = [ df PL(IfDP, (I DIG(H)|
* Signal-to-noise ratio:
* SNR =%

o

* Usually, set SNR = 2, to determine upper limit of Q.




Detection pipeline

* The composition of the pipeline, including five modules:

For analysis (92 FE8497) For checking analysis code

(RS ITREFRD)

Signal generation (#&#{5
STEHE)

Signal recovery (ESHE
1)

Data selection (B %)

Data input ($3BiEN)

Data analysis (¥18547)

-]

1,, Likelihood, model parameters constraint




{

. Low scale PT

. and PTA




Low scale PT for PTA

Typically the PT that PTA is good to
detect is at the sub-GeV scale!

Some hidden DM model?

Hidden models of mirror QCD?




PTA data from PPTA collaboration

We use the raw data from the PPTA collaboration
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The Australian 64 meter Parkes telescope

The only last open release constrain on SGWB is from
EPTA 2015, quite long time ago
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Statistical correlation

We use the raw data from the PPTA collaboration

The energy density of the stochastic gravitational wave background, nghz, has a
relation with the the one-sided power spectral density S(f):

| 3H? i Where,

I 100
S(f) a 1272 f5 22 Qg“h Hypo = 100 km s lMPC |

statistical correlation between the time-residuals

(ot! oty = f df S(f) T (81s) cos(2xf(t: — 1))
Ji

* where t; and t; are pulse arrival times,
* | and I denotes different pulsars

* T;;(6") is known as the Hellings & Downs curve and 8%/ is the angle between two pulsars

The time interval for the correlation between different
time-residuals are roughly weeks or months. @



Statistical correlation

The statistical analysis details

* Hellings & Downs curve:

0S8 {yy

r((”)— 8Il+ +4(|—COS(U)lﬂ(Sin %)I(l"‘(s“)

* Here (j; is the angle between the pulsars | and J on the sky and F( (,,) is the overlap reduction
function, which represents the expected correlation between the TOAs given an isotropic
stochastic GWB, and the J;; term accounts for the pulsar term for the autocorrelation.

* We found the ‘White noises’, ‘Spin noise’, ‘DM-noise’ parameters for each pulsar
(26 in total), and fix them at their best-fit values.

* We put the free-spectrum SGWB signal into the data, and find their 95% Bayes
upper limits at each frequency 208 O



95% C.L. constrain

95% Bayes upper limit of
SGWB energy density from PPTA DR2
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Some comments

With more data, now we are approaching the cosmic
phase transition using real data

® Hope the future data can tell us more on the cosmic
PTs
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