

Di-Higgs and BSM Higgs Search at LHC

Lei Zhang (张雷)

leizhang1801@nju.edu.cn

EWPT workshop at IHEP, 31 Jul. 2020

Standard Model Prediction Higgs Boson H⁺ H⁺ H⁺ H⁺

Higgs boson established, solidly!

How it happened?

- We knows the beginning and we know the ending
- But no clue in between

How it happened?

- We knows the beginning and we know the ending
- But no clue in between

SM assumed simplest form

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$$

• Nature can be a bit more complicated

$$V' = V + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \cdots$$

Who cares?

Electro-Weak Phase Transition: 1st order or 2nd order ?

Sakharov Conditions

- 1) B Violation; 2) C/CP Violation
- 3) Departure from Thermal Equilibrium
 - (EW Phase Transition)

Who cares?

Electro-Weak Phase Transition: 1st order or 2nd order ?

Sakharov Conditions

 B Violation; 2) C/CP Violation
 Departure from Thermal Equilibrium (likely EW Phase Transition)

Is the current vacuum stable?

Probe Higgs potential

• Expand Higgs potential about the minimum

$$V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4 \implies V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

Probe Higgs potential

• Expand Higgs potential about the minimum

$$V(\phi) = -\mu^{2}\phi^{2} + \lambda\phi^{4} \implies V_{0} + \lambda v^{2}h^{2} + \lambda vh^{3} + \frac{\lambda}{4}h^{4}$$
$$= V_{0} + \frac{1}{2}m_{h}^{2}h^{2} + \frac{m_{h}^{2}}{2v^{2}}vh^{3} + \frac{1}{4}\frac{m_{h}^{2}}{2v^{2}}h^{4}$$
$$\boxed{m_{H}\forall \dot{\rho} \oplus } \qquad \boxed{\lambda hhh} \qquad \overbrace{} \qquad \atop[]]] \qquad []] \qquad []] \]$$

Probe Higgs potential

Expand Higgs potential about the minimum

Standard Model:
$$\lambda_{hhh} = \frac{m_h^2}{2v^2}$$

- Higgs-self coupling (λ_{hhh}) is crucial for probing Higgs potential
- λ_{hhh} can be measured in double Higgs production (di-Higgs) at LHC

Di-Higgs at LHC

 Cross section: 1000+ times smaller than single Higgs

Di-Higgs at LHC

- Cross section: 1000+ times smaller than single Higgs
- Deconstructive interference, further adding difficulties

Di-Higgs at LHC

- Cross section: 1000+ times smaller than single Higgs
- Deconstructive interference, further adding difficulties
- BSM physics can also contribute

Searching channels

 Various decay modes searched. lead channels: bbγγ, bbττ, bbbb

Di-Higgs: bbγγ

Backgrounds:

- QCD 2 jets+photon (or jet $\rightarrow \gamma$)
- Single H: bbH, (t)tH, etc

Analysis strategy

- m_{bb} and $m_{\gamma\gamma}$: to extract signal
- m_{bbyy} important for λ_{hhh} extraction
 - $m_h = 125$ to constrain m_{bb} and $m_{\gamma\gamma}$
- ATLAS: cut-based; CMS: MVA-based
- Low Br., low bkg, high S/B

Di-Higgs: bbbb

Backgrounds

- Multi-jet(95%), top quark pair (ttbar) (5%)
- ATLAS: sideband
- CMS: shuffling two di-b systems

Event selection

- Resolved: anti-k_T R=0.4 Calo jet
- Boosted : anti-k_T R=1.0 Calo fatjet with R=0.2 trk-jet

- Both use di-Higgs invariant mass to fit
- High Br., high bkg, low S/B channel

Di-Higgs: bbττ

Backgrounds:

ttbar, Jet faking τ: QCD Multi-jet

Analysis strategy

- ATLAS: MVA-based;
- CMS: Cut-based, MT₂ to fit (PLB 728 (2014) 308–313)

• Medium Br., medium S/B

Event selection

- $\tau_{had} \tau_{had}$: 2 hadronic decay τ
- $\tau_{lep} \tau_{had}$: 1 e/µ, 1 hadronic τ
- 2-3 neutrinos

Di-Higgs summary: λ_{hhh}

- ATLAS: $\sigma_{hh} < 6.9 (10)$ SM, -5.0 $< \lambda_{hhh} < 12.0$
- CMS: $\sigma_{hh} < 22.2 (12.8) \times SM$, -11.8 $<\lambda_{hhh} < 18.8 (-7.1 < \lambda_{hhh} < 13.6)$

Some personal reflections

- Performance of ATLAS and CMS are generally the similar.
 However, sensitivity order are different among three channels
- The difference maybe due the person-power. There are room for improvement.

Some personal reflections

Different final states different S/B

- bbbb: High Br., low S/B
- ττbb: Medium Br., medium S/B
- γγbb: Low Br., large S/B

As Run 3 and even HL-LHC,

- Statistical uncertainty will go down easily, not sure systematical one
- Background uncertainty become critical and hard to reduce
- Explore those high S/B final state

19

Some personal reflections

Di-Higgs summary: BSM

Resonance search for spin-0 and spin-2 particles

-0.6 -0.8

-1.0

300

400

500

600

700

800

 $m_{\rm S}$ [GeV]

1.5

200

250

300

350

400

450

500

⁵⁵⁰ m_A [GeV] 21

Boosted di-Higgs search in bbττ

Di-Higgs summary: BSM

g 0999999 parameter space into 12 samples

Н

Н

Di-Higgs summary: BSM

g

,00000 g .0000000 CMS explored 5 EFT operators, divided parameter space into 12 samples

н

Н

g

g

leeee

فككك

н

Н

λ_{hhh} measurement with Single Higgs

- NLO EW corrections give Higgs crosssection, branching ratios, and kinematics dependence on κ_λ
- Single Higgs final states can also be sensitive to κ_λ

λ_{hhh} measurement with Single Higgs

- Kinematics change taken into account $n_{i,f}^{\text{signal}}(\kappa_{\lambda},\kappa_{m}) \propto \mu_{i}(\kappa_{\lambda},\kappa_{m}) \times \mu_{f}(\kappa_{\lambda},\kappa_{m}) \times \sigma_{\text{SM},i} \times \text{BR}_{\text{SM},f} \times (\epsilon \times A)_{if}$
- $\mu_i(\kappa_{\lambda}, \kappa_m)$ and $\mu_f(\kappa_{\lambda}, \kappa_m)$ varies according to VH production mode on the STXS bin while STXS on ggF production is not considered

 $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8} = 4.6^{+2.9}_{-3.5} (\text{stat.})^{+1.2}_{-1.2} (\text{exp.})^{+0.7}_{-0.5} (\text{sig. th.})^{+0.6}_{-1.0} (\text{bkg. th.}) [\text{observed}]$ $\kappa_{\lambda} = 1.0^{+7.3}_{-3.8} = 1.0^{+6.2}_{-3.0} (\text{stat.})^{+3.0}_{-1.7} (\text{exp.})^{+1.8}_{-1.2} (\text{sig. th.})^{+1.7}_{-1.1} (\text{bkg. th.}) [\text{expected}]$

Beyond SM Higgs boson search

Extended Higgs sector

 Extension of Higgs sector could change the Higgs potential.

$$V_{\rm CxSM} = \frac{m^2}{2} \mathbf{H}^{\dagger} \mathbf{H} + \frac{\lambda}{4} (\mathbf{H}^{\dagger} \mathbf{H})^2$$

Extended Higgs sector

- Extension of Higgs sector could change the Higgs potential.
- For example, SM plus one singlet extension
 - Allow 1st order EW phase transition

$$V_{\text{CxSM}} = \frac{m^2}{2} \mathbf{H}^{\dagger} \mathbf{H} + \frac{\lambda}{4} (\mathbf{H}^{\dagger} \mathbf{H})^2 + \frac{\delta_2}{2} \mathbf{H}^{\dagger} \mathbf{H} |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 + \left(\frac{b_1}{4} \mathbb{S}^2 + a_1 \mathbb{S} + c.c.\right)$$

Benchmark models

Two-Higgs Doublets Model (2HDM)

- Minimum extension of Higgs sector
- Requested by MSSM

$$\phi_u = \begin{pmatrix} \phi_u^+ \\ \phi_u^0 \end{pmatrix} \quad v_u : \quad \text{VEV}_u$$
$$\phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^- \end{pmatrix} \quad v_d : \quad \text{VEV}_d$$

• Two free parameters at tree level: m_A , tan $\beta = v_u/v_d$

Neutral Higgs bosons: MSSM as example

Coupling strength:

	g_{VV}/g_{VV}^{SM}	g_{uu}/g_{uu}^{SM}	g_{dd}/g_{dd}^{SM}
A	_	$\gamma_5 \cot\beta$	$\gamma_5 aneta$
H	$\cos(eta - lpha) \ o 0$	$\sin lpha / \ \sin eta \ o \cot eta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$
h	$\sin(\beta - \alpha) \rightarrow 1$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha / \cos \beta \rightarrow 1$

Neutral Higgs bosons: MSSM as example

Coupling strength:

	g_{VV}/g_{VV}^{SM}	g_{uu}/g_{uu}^{SM}	g_{dd}/g_{dd}^{SM}
A	_	$\gamma_5 \cot\beta$	$\gamma_5 aneta$
H	$\cos(eta-lpha) \ o 0$	$\sin lpha / \ \sin eta \ o \cot eta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$
h	$\sin(\beta - \alpha) \rightarrow 1$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha / \cos \beta \rightarrow 1$

Production modes:

Decay channels:

Neutral Higgs: A/H→ττ

Neutral Higgs: $A/H \rightarrow t\bar{t}$

- Search range: 400-750 GeV, width Γ/m={0.5-25}%
- Exclusion in hMSSM
 - an mild excess at mA =400 GeV with Γ /m=4% 1.9 σ global (3.5 σ local)

Neutral Higgs: A/H \rightarrow bb or $\mu\mu$

ATLAS

500

600

700

800

900

m₄ [GeV]

1000

MSSM scenarios

Obs hMSSM

---- Exp hMSSM

±2σ hMSSM

---- Exp m.mod+

----- Exp m^{hod-}

±1σ hMSSM

$A/H \rightarrow \mu\mu$: 2nd generation fermion

Flavourful Higgs model

Type II and

Flipped 2HDM

Charged Higgs $H^{\pm} \rightarrow top+b$

- categorization w.r.t. N_{jets} and N_{b-jets}
- Parameterized Deep Neural Network technique used

Charged Higgs $H^{\pm} \rightarrow \tau \nu$

- $H^{\pm} \rightarrow \tau \nu$: τ_{had} +jets, τ_{had} +lep final state
- MVA technique used

Searches in various di-bosons

- Inspired by RS, 2HDM, GUT, etc.
- Diboson resonance searches
 - Vh, WW, WZ, ZZ
 - Big combination: qqqq, vvqq, lvqq, llqq,
 lvlv, llvv, lvll, llll, qqbb, vvbb, lvbb, and llbb

Di-photon resonance

Light boson searches

Light bosons motivated by by

- Extended Higgs sector
 - NMSSM (2HDM+S), SM/2HDM+V
- 1st EW phase transition
- Dark matter

 $h \rightarrow Z_d Z_d \rightarrow 4l$ $Z_d \rightarrow 4l$

Constrain from h(125) measurement

Precise measurement of h(125) constraint BSM Higgs sector

- Benchmark models: 2HDMs (Type-I, II, Lepton-specific, Flipped)
- Assumed that only the 2HDMs responsible for the potential BSM effects
- As functions of the alpha and tan beta

Summary

- Nature of EW spontaneous symmetry breaking is one of the most important topic in HEP
- Probing Higgs self coupling via di-Higgs production carried on extensively at ATLAS and CMS
 - One of most challenging measurement, need coherent effort from both experimentalists and theorists.
- Additional Higgs bosons, predicted from the extended Higgs sector, searched extensively at ATLAS and CMS
 - Crucial aspects for BSM physics study
 - Only some representative results shown, more can be found below
- Some studies on the CP nature of the Yukawa coupling performed in ttH and $H \rightarrow \tau \tau$, recently.

For reference and more results: <u>ATLAS public results</u> and <u>CMS public results</u>