Recent highlights on CEPC Performance & Reconstruction: Lepton, Hadronic system & VTX

Regular CEPC Det Meeting

Mangi Ruan

Lepton

- Electron & Muon
 - Isolated
 - Inside jet —
- Tau
 - Tau only event ($Z \rightarrow \tau \tau$; vvH, $H \rightarrow \tau \tau$)
 - Isolated _
 - Inside jet —
- Main contributor: Dan

Light Lepton Identification

- LICH uses TMVA methods to summarize 24 input variables into two likelihoods, corresponding to electrons and muons.
- The efficiency for electron and muon is higher than 99.5% (E>2 GeV). Pion efficiency ~ 98%.

Migration Matrix at 40GeV (LICH)

Migration Matrix for ALEPH PID (> 2 GeV)(Eur.Phys.J.C20:401-430,2001)

Туре	e [–] like	μ^- like	π^+ like	Туре	e ⁻ like	μ^- like	π^+ like	undefined
e	99.71 ± 0.08	< 0.07	0.21 ± 0.07	e^-	99.57 ± 0.07	< 0.01	0.32 ± 0.0	0.09 ± 0.04
μ^-	< 0.07	99.87 ± 0.08	0.05 ± 0.05	μ^-	< 0.01	99.11 ± 0.08	0.88 ± 0.08	0.01 ± 0.01
π^+	0.14 ± 0.05	0.35 ± 0.08	99.26 ± 0.12	π^+	0.71 ± 0.04	0.72 ± 0.04	98.45 ± 0.06	0.12 ± 0.03

Eur. Phys. J. C (2017) 77: 591

FCC Workshop 2020

Leptons in jet (endcap): slightly degrading

- Induced by the limited performance on PFA Clustering.
- Right plot: eff & purity of electron finding in $Bc \rightarrow Tv$ analysis
 - An ideal lepton id can improve ~ 10%, visible, not significant.

Event topology

* llH channel / $Z \rightarrow \tau \tau$ * qqH (isolate τ with jets) * τ inside jets

- (Veto the two isolate lepton)
- Divide the whole space into 2 part
- Multiplicity & Impact parameter

- Tau jet reconstruction package: TAURUS
- TAURUS with different parameters

Taurus

11

- Double cone based algorithm
 - Find seeds(Tracks with enough energy)
 - Collect particle in two cones
 - Use the multiplicity, energy ratio between two cones, invariant mass for τ tagging

FCC Workshop 2020

Hadronic System

- Identification of the hadronic system, and measurement of its 4-momentum
 - Identification: well, leptons can be very well identified
 - Tagging of ISR photon, Bremstrahlung/FSR from lepton, etc, Converted Photon (EM objects) still needs some development (Not urgent, we know it works)
 - 4-momentum measurement: quantified using BMR
- Identification of Color Singlet in Multi-jet events, i.e., identify single Boson in full hadronic events of ZZ, ZH, WW, etc.
 - Challenge, important & Very interesting
- Differential measurements
 - Current criteria: Jet Clustering and Matching
 - Going beyond?

BMR oriented Optimization

CEPC requirements: BMR < 4% (3.8% achieved at CDR baseline) Dependence between BMR & Detector Geometry quantified **Regular CEPC Det Meeting** 9

BMR[%]

BMR & Optimization

- BMR = 3.8%, 3.6% seems reachable without fundamental algorithm change...
- Allowance of 4%, BMR = 3.6/3.8% means we can
 - HCAL optimal size ~ 2 cm -> reduce the HCAL # Channel to a quarter
 - Reduce the tracker R&Z by 24/12%
 - Reduce the ECAL #Channels to a quarter: either by double Cell size, or reduce the #Layer
 - Reduce the B-Field by 50%
 - Increase the HCAL Cell size ~ 5 cm! HCAL #Cell reduced to 4%...
 - Reduce the HCAL #Layer by 50%
- Further improving of BMR... by algorithms... is critical.

Differential Jet Response

- Parton \rightarrow Genjet \rightarrow Recojet
- Matching between Genjet & Recojet using energy/direction information
- Relative difference between Gen/Recojet: Jet Energy Resolution/Scale, Jet Angular Resolution/Scale

22/7/2020

Regular CEPC Det Meeting

Differential response

JER: much better than LHC at same Pt

- Dependence on the Jet Clustering Algorithm: up to 10%!... •
- What's the optimal choice of Jet clustering/matching for a given measurement? Why?... 22/7/2020 **Regular CEPC Det Meeting** 13

A very challenge & interesting topic

- W mass measurement at 240 GeV:
 - Statistic uncertainty ~ 1 MeV using only µvqq final state
 - Can we better control the systematic using the differential information & how to calibrate?

VTX reconstruction: Diagnosis

• At vvH, $H \rightarrow cc$ events.

VTX Position resolution (transverse): 5-10 µm

Regular CEPC Det Meeting

For more detail

- Talks at Crystal Calorimeter WS https://indico.ihep.ac.cn/event/11938/other-view?view=standard
 - Jet lepton (Dan)
 - Differential jet response (Peizhu)
 - Optimization: BMR at different geometries (Yukun, Dan, Jiechen, Hanhua, etc)
 - Test of Principle: Reconstruction at crystal ECAL with bars in X/Y direction (Yuexin): 2 particle is solvable in super cell.

Summary

- Leptons:
 - Electron & Muon: Potential improvement is always possible, but not significant
 - Maximally ~10% improvement in total eff & purity for electron in b-jet
 - Tau: reasonable performance improvement might be significant (eff*purity \rightarrow 50%)
 - Warp into publication
- Hadronic System:
 - BMR, standard & guidance the optimization:
 - BMR \rightarrow 3.6%. Allowance of 4% means cost can be significantly reduced w.r.t baseline.
 - Better BMR is an important: goal for Reco-Algorithm development.
 - Differential: Promising Superb to LHC experiments (2-4 times in JER, 4-10 times in JES...) benchmark analyses, i.e., TGC is needed to fully understand the requirement
 - Need to be innovative, on differential measurements & Color Singlet identification
- VTX: at $H \rightarrow cc$ event
 - Looks good except VERY LOW efficiency for VTX with Charge Multiplicity of 2: Diagnosis!
 - Typical position resolution of 5-10 μm: need to understand
 - Is it good enough?
 - Relation with Tracker/VTX geometry?

Backup

Fig. 8 The lepton identification efficiency in jets depending on clustering efficiency and purity.

Fig. 9 The mis-id rate of pions to electrons or muons in jets, depending on clustering efficiency times purity.

40

Mis-id to muon (En<3GeV)

Mis-id to muon (En>8GeV)

Mis-id to electron (En>8GeV)

Mis-id to electron (En<3GeV)

Mis-id to muon (3GeV < En < 8GeV)

Mis-id to electron (3GeV<En<8GeV)

60