

中國科學院為能物招補完備 Institute of High Energy Physics Chinese Academy of Sciences

Progress of HGCal module assembly @IHEP

Feng Wang On behalf of IHEP HGCal group 11/08/2020

Outline

- Introduce CMS HGCal ≻HGCal
 - ≻Key equipment
- Status of HGCal module assembly
 - ≻Module assembly workflows
 - ➤Assembly tolerance
 - ≻Status of module assembly at IHEP
- Summary and Plan

CMS HGCal

Whole calorimeter will be operated at -30°C

Contracture of CMS end-cap calorimeter

Module production workflows

Module assembly requirements

- Dispense
 - Coverage area over 70%
 - The assembly procedure maintains an epoxy layer thickness of 75µm
- Flatness & Alignment
 - Flatness of each layer should be more than ± 50µm for next glue dispense and wirebond
 - The each edge of the silicon is about 150 µm away from the edge of the baseplate to protect silicon wafer
 - The tolerance for PCB placement in the horizontal and vertical directions is \pm 75µm.
- Wirebond
 - ➤ Three wire bonding per pixel pull strengths~0. 1N(10g)
 - A nominal 128 channel module requires over 400 wirebond wires
 - Over 4000 wire need to be bond per day during mass production
- Encapsulation
 - All of the wirebonds are then encapsulated with Sylgard 186, a clear silicon elastomer with very high radiation tolerance

Tolerances

Tolerances

- Components
 - The sensors and Au-Kapton sheets are manufactured very flat and uniform
 - The baseplate is the main source of nonuniformities
- Gantry
 - > XY axis accuracy: ± 5 m
 - \triangleright Z axis accuracy: ±2 m
 - ➢ U axis accuracy: ±5arc
 - The optical system detects fiducial marks in the ranging from 50 to 150 µm with recognition precision better than 5 m.
- Tools
 - Flatness of assembly tool could be manufactured about ±20 m

Measured plate deviation from the plane (non-flatness) for prefabricated baseplates ranged from 0.000 to 0.212 m.

Module assembly @UCSB

- A robotic pick-and-place gantry is used to assembly HGCal module
 - Optical system detects fiducial marks
 - Vacuum system pick-and-place component
 - Glue dispenser used for epoxy dispensing
 - Glue dispensing for six module with 6 inch per one run
 - New gantry with XY axis travel of 1250mm×1250mm will arrival at UCSB for 8 inch module assembly

Gantry @IHEP

Calibration

Laser interferometer

Grating ruler

YY Axis calibration

X Axis calibration

Grating ruler

Position accuracy of XYZ axis (1D)

自定 利 星儿相死 个棚足!	星骨IC: 不得运					1度 和 虚灵植物 不确	定度备在: 未明法					
名称	(+) µm	(-) µm	(Bidir) µm	久 筋	(2 (µm))	大麻	(+) µm	(-) µm	(Bidir) µm	1	朱彩	(11 (µm)
指定 (A)				(B)	1.87	(A)				1	灵向 (B)	2.77
重义构定 (円)				軍均反向差	0.87	1. 洗澡底 (R)					平均反向差	1.68
系統攝論 (E)	0.98	1.26	2.13	(平均偏差 (M)	0.66	(境備並 (E)	3.65	6.17	6.20		平均)施益 (M)	4.84

问题:

重复精度 (円)

石段論論(の)

2.42

積度(R)

编卷 (E)

1.56

1.56

0.94

1.97

3.68

平均反应差

平均偏差 (N

平均应向差

平均偏差 (M

-0.10

1.25

12

Pattern recognition precision

Fiducial position (771.1, 947.2)

Thickness control

• Steps

- Choose nominal gauge blocks to simulate the total thickness of module
- Place gauge blocks between marble table and pick-up tool
- Adjust the screw so that the tool touch to the gauge block tightly
- Adjusted tool is used for module assembly

Pickup tooling improvements

• Assembly tooling for 8 inch module

- Feet maintain constant height
- ➢ No shimming saves time
- Separate feet for different sensor and baseplate thicknesses
- Relief holes for lightening tool

Assembly tooling @IHEP

- Assembly tooling and dummy components
 - 6 inch pickup tool for sensor and PCB are ready at IHEP
 - Dummy acrylic PCB use to glue dispenses test
 - Assembly tray and pedestal for 6 inch module arrived to IHEP this week

Assembly test @IHEP

Glue pattern for baseplate

Glue pattern for sensor

Glue pattern for kapton

Glue dispense training

QC of gantry

Gantry qualification steps based on what was done for the CMS tracker

These exercises will be done by all MACs to obtain a record of the performance of the individual machines. We might want to repeat some or all of them regularly during production.

- 1. Position precision
 - Tests the precision of manual measurements with the gantry system
- Pattern recognition precision
 - Tests the precision of the pattern recognition system
- 3. Alignment precision Absence of dummy PCB and sensor with fiducial
 - Certifies the accuracy of picking and placing components
- 4. Assembly procedure precision

Tools are being fabricated

Finished

- Certifies the accuracy of assembling an actual module
- 5. Gantry calibration versus CMM Calibration by laser interferometer
 - Compare gantry measurement of a glass calibration plate with measuring the same plate on a CMM

UCSB will work out procedures for all these qualification steps and perform them on our gantry. We will create a Twiki page for all MACs to report their results.

8

Exercises for learning to use the gantry system **By UCSB**

- Measure how parallel gantry head is to gantry table and fixtures. 23
 - Exercise movement X,Y, Z, Theta(Linear movement, Circles etc.)
 - Practice controlling dispenser(Controlling pressure, moving speed, different patterns)
 - Practice controlling vacuum(Turn on/off vacuum programatically, read out sensors etc.)
- Practice Gluing on acrylic sheets(Glue gap consistency and spread)
 - Practice picking and placing pick up tool(without any components)
 - Practice picking and placing pick up tool and dummy acrylic components
- Practice gluing on acrylic dummy pieces 8.
- Practice gluing and picking and placing on dummy 9. components(non-acrylic)

On going

Wirebond training @IHEP

OGP training

• On site training

- > Basic operation.
- > Pattern recognition: line, circle and arc
- > 3D Measure

• Exercise

Draw 6&8inch PCB pattern

6 inch

Summary

Equipments	Tooling	Material	QC
Gantry arrival	6 inch pickup tool, assembly tray and pedestal	 6 & 8 inch dummy acrylic PCB 6 & 8 inch dummy sensor 	On going and finish part of QC task
Bonder arrival	6 inch vacuum pedestal	8 inch dummy PCB 8 inch real PCB	On going
OGP arrival			
Mini Gantry arrival			
Pull tester not yet			

All tooling and material should be switched to 8 inch module assembly in final QC task

	Milestone Description	Duration	Finish by
1	Cleanroom lab space set up		
2	Have all equipment installed		Sep 11 th 2020
3	Train operators on all equipment		Sep 11 th 2020
4	Acquire all the necessary tooling		Oct 23 rd 2020
5	Acquire all dummy components and supplies		Oct 23 rd 2020
6	Qualify the gantry and wirebonder		Nov 6 th 2020
7	Develop glue patterns using acrylic dummies	2 weeks	Nov 20 th 2020
8	Build 10-15 dummies with blank silicon	4-6 weeks at one glue step per day	Jan 8 th 2021
9	Acquire all real components		Jan 15 th 2021
10	Build 4 dummies with HPK dummy sensors	2 weeks	Jan 22 nd 2021
11	Build 2 real modules!	1 week	Feb 1 st 2021

Back up

