Charge Collection of Silicon Sensors

Yebo Chen On behalf of IHEP ATLAS ITk Group Aug 11, 2020

- Charge collection in silicon strip sensor
- Charge collection system
- ALiBaVa system
- Voltage sweep
- Conclusion

Aug 11, 2020

LHC detector upgrade workshop

Ionization

- Electron-hole pairs generated along the particle trajectory and collected by the electrode via drift
- Capacitive coupling
 - Signal read out through AC coupling (p-type: negative current pulse)

Charge collection in silicon strip sensor

Charge collection spectrum

• A Landau function convoluted with a Gaussian

- MPV: defined as a measure of the collected charge
- Full charge collection above the full depletion voltage: 23100 e- for a sensor with a 300 μm active depth

Radiation environment expectations for the ITk detector

Table 3.6: Overview on maximal fluences and doses. The values including a safety factor of 1.5.			
Layer	Radius	Maximal Fluence	Maximal Dose
	[mm]	[n _{eq} /cm ²]	[MRad]
Strips			
Long Strips	762	3.8×10^{14}	9.8
Short Strips	405	7.2×10^{14}	32.5
End-cap	385	1.2×10^{15}	50.4
Pixels			
Layer 0	39	$1.87 imes 10^{16}$	1268
Layer 1	75	$0.59 imes 10^{16}$	549
Layer 2	155	0.22×10^{16}	129
Layer 3	213	$0.15 imes 10^{16}$	87
Layer 4	271	$0.11 imes 10^{16}$	53

Charge collection in silicon strip sensor

Charge collection requirements (at the end of lifetime)

- Bias voltage: -500 V
 Collected charge: 11,500 17,300 e⁻
- Bias voltage: -700 V
 Collected charge: 14,000 19,500 e⁻

PC

Charge collection system

Amplifier

Trigger

signal

- MIP source: Sr-90
- Trigger: scintillator and silicon photomultiplier
- \succ Sensor to be tested: ATLAS17LS miniature sensor
- Read out system: ALiBaVa system

power supply for Si PM

HV power supply for sensors

9

- \succ MIP source: Sr-90
- Trigger: scintillator and silicon photomultiplier

Charge collection system

- Sensor to be tested: ATLAS17LS miniature sensor
- Read out system: ALiBaVa system

ALiBaVa system

- ALiBaVa (A Liverpool Barcelona Valencia collaboration) system is an analogue readout system used to read out the signal from the sensors
- Two different laboratory setups
 - Radioactive source setup
 - Laser setup
- Main components
 - Detector board
 - Daughter board
 - Mother board

- Detector board
 - 1 or 2 sensors
- Daughter board
 - 2 Beetle chips
 - 128 channels each
 - Analogue or binary output mode
 - HV power supply for sensors
 - Sending analogue output signals to the motherboard

Mother board

- Amplification, filtering and digitalization of analogue signals
- Trigger conditioning
- Power supply for daughter board and mother board
- Communication with a PC via USB

Working process of ALiBaVa system

- Pedestal and noise scan
- Calibration to obtain gains of each channel
- Measurements
- Analysis
 - Subtracting pedestals and common mode noises
 - Cluster finding
 - Pulse shape reconstruction to obtain the time window
 - Getting the collected charge spectrum

- Seed cut (5σ) only the peak
- Neighbor cut (3σ)

- Pulse shape reconstruction
- Non-irradiated p-type
- Bias voltage: -210V
- Peak: 17ns
- Time Window: [12ns, 22ns]

Pulse shape reconstruction

- Non-irradiated p-type
- Bias voltage: -210V
- Time Window: [12ns, 22ns]

Voltage sweep

Time Window: [12ns, 22ns]

Voltage sweep

Time Window: [12ns, 22ns]

Voltage sweep

- Experimental setup established for silicon sensor charge collection measurement
- Gained experience with the ALiBaVa data acquisition system
- > Next
 - Higher bias voltage
 - Improved setup with better collimation
 - Measurements with sensors before and after irradiation

- > Experimental setup established for silicon sensor charge collection measurement
- Gained experience with the ALiBaVa data acquisition system
- > Next
 - Higher bias voltage
 - Improved setup with better collimation
 - Measurements with sensors before and after irradiation

Thanks!