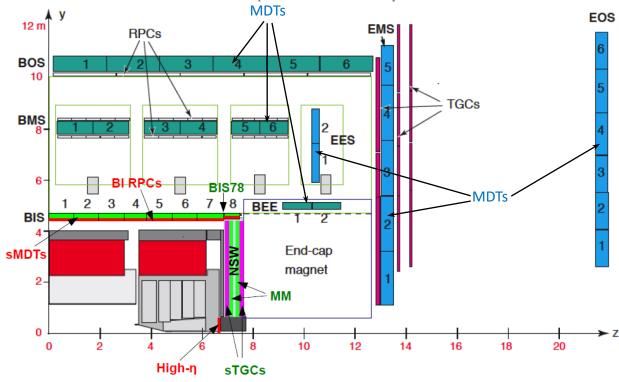
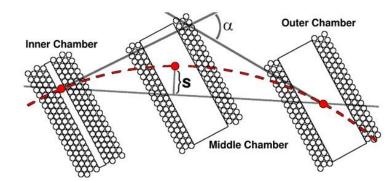

TDC ASIC Design for MDT in ATLAS Phase II Upgrade

Yuxiang Guo August 12th, 2020 University of Science and Technology of China University of Michigan

Outline

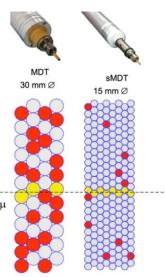


- > Introduction
- TDC ASIC design
- > Testing of the TDC
- Summary

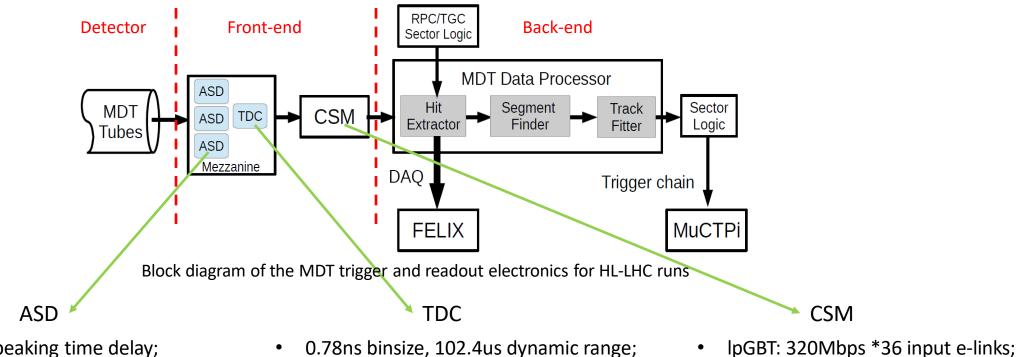


ATLAS Monitored Drift Tube (MDT) Detector


- > ATLAS muon spectrometer is mainly used for muon triggering, identification and momentum measurement;
- Provides a standalone transverse momentum measurement (10% at 1 TeV), mainly by the Monitored Drift Tube (MDT) chambers;



R-Z views of the Phase-II ATLAS muon spectrometer layout (small sector)

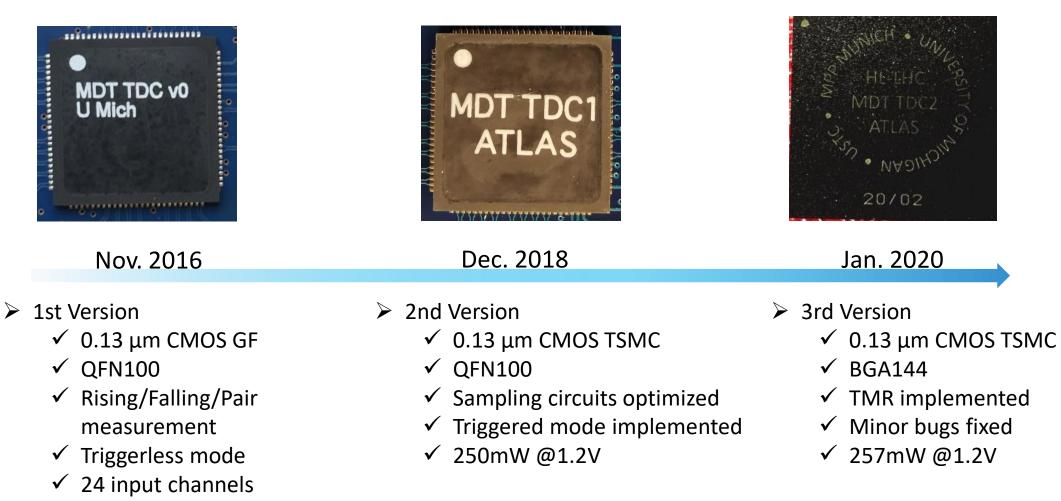

3-station MDT chambers to measure transverse momentum

MDT Frontend Electronics Upgrade

- Monitored Drift Tube(MDT) in the current system is only used for precision readout; \succ
- After the Phase II upgrade, MDT information will be used also at the first-level trigger; \succ
- MDT electronics needs to cope with the new ATLAS TDAQ scheme. \geq

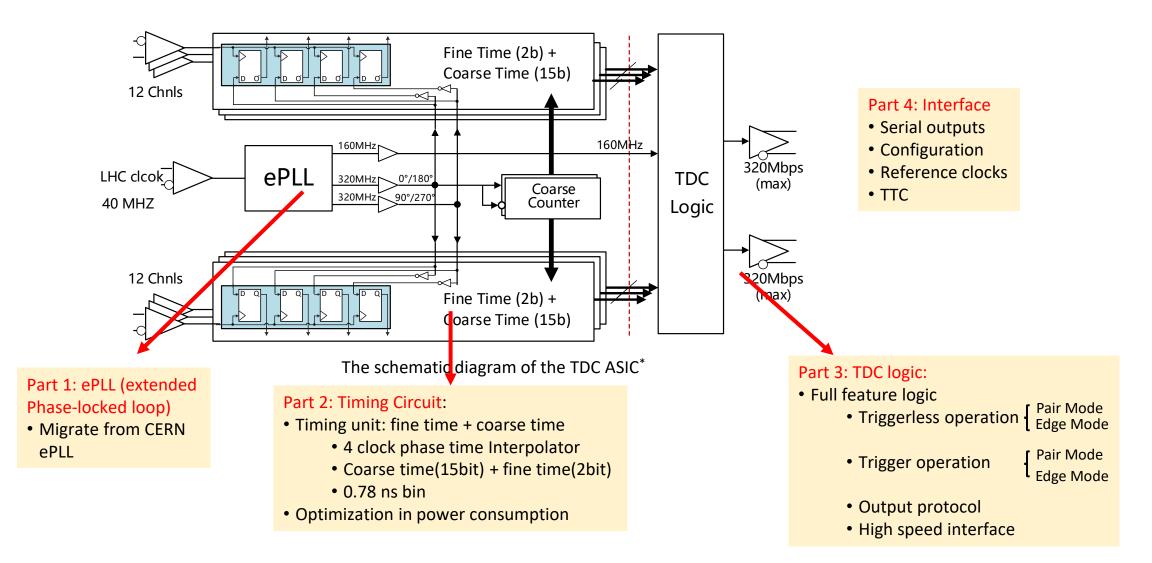
- Lower peaking time delay; ٠
- larger sensitivity and higher SNR for a minimum charge of 5fC.
- 0.78ns binsize, 102.4us dynamic range; ٠
- Triggerless working mode; ٠
- 320Mbps *2 output data rates. ٠

10.24Gbps *2 output optical links.



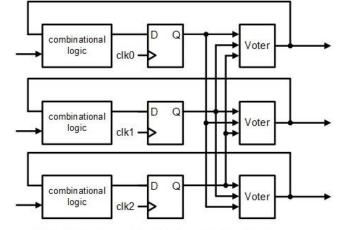
- Introduction
- TDC ASIC design
- Testing of the TDC
- Summary

Timeline of the new TDC ASIC

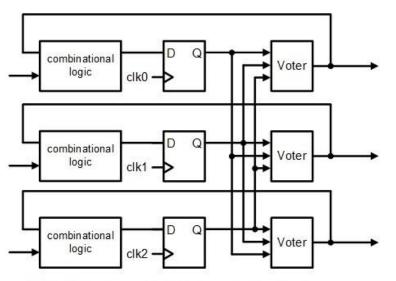


- ✓ 320Mbps*2 output
- ✓ 355mW @1.5V

5

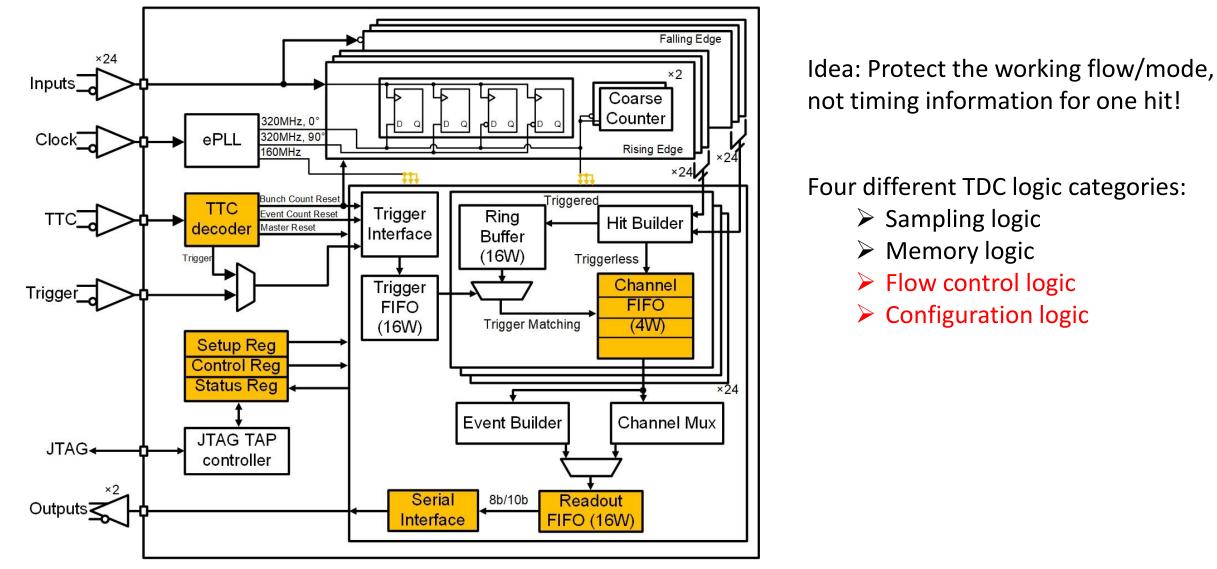


	SRL	SFsim	SFsim SFldr		RTC	
TID (krad)	5.6	1.5	1.5	2	25.2	
$NIEL(10^{11}n/cm^2)$	13.2	2	1	2	52.8	
SEE(10 ¹¹ n/cm ²)	2.24	2	1	2	8.96	


Radiation-tolerance criteria with safety factors for the BIS78 region

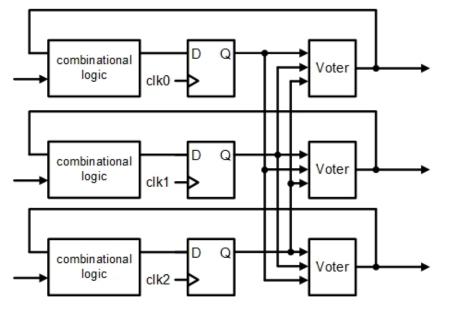
- > NIEL: Modern CMOS integrated circuits are insensitive to displacement damage.
- > TID: 25krad is insignificant for the 130nm CMOS techonology.
- SEE: Recoverable (SET, SEU) and non-recoverable (latch-up, burnout, gate rupture)

For Recoverable SEE, Triple Module Redundancy (TMR) is effective!

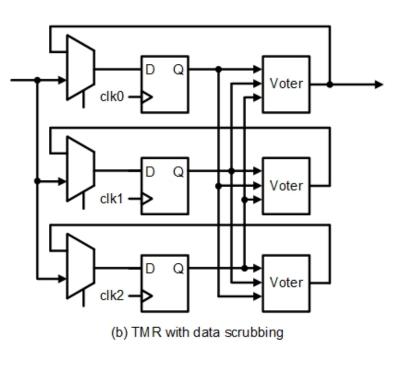


TMR	Trade off	Power
Power Consumption	TDC V1 Measured (mW)	Full TMR Estimated (mW)
Digital	146	438
Analog	104	104
Total	250	542

- TMR with 3 voters and individual combinational logic
- A 3 times power consumption in the digital logic is expected if TMR is implemented fully! Power consumption is not acceptable, let alone die area...
- Solution: TMR only implemented in critical logic blocks.


TMR Implementation

Block diagram of the new TDC ASIC with TMR implemented (Yellow)



(a) TMR with 3 voters and individual combinational logic

Flow control logic TMR cell

> Internal state machine, FIFO pointers

Configuration logic TMR cell

External JTAG input

TMR block behavioral simulation

At43503.56563ns common_setup_with_TMR_inst.TTC_setup.parallel_data_out_A[4] force to 1 At 43503.56662ns common_setup_with_TMR_inst.TTC_setup.parallel_data_out_A[4] released At43566.06563ns common_setup_with_TMR_inst.TTC_setup.parallel_data_out_A[4] force to 1 At 43566.06662ns common_setup_with_TMR_inst.TTC_setup.parallel_data_out_A[4] released

Example for one register forced to be reversed

Monitor the outputs and check if they are equal to each other

Three different ways to simulate SEU:

- Change 1 clk frequency -> clock glitches
- Shut down 1 of the 3 clks -> clock miss
- Force register to reverse -> register upset

TDC Logic Digital Simulation (after place and route)

Triggerless Pair mode hit data

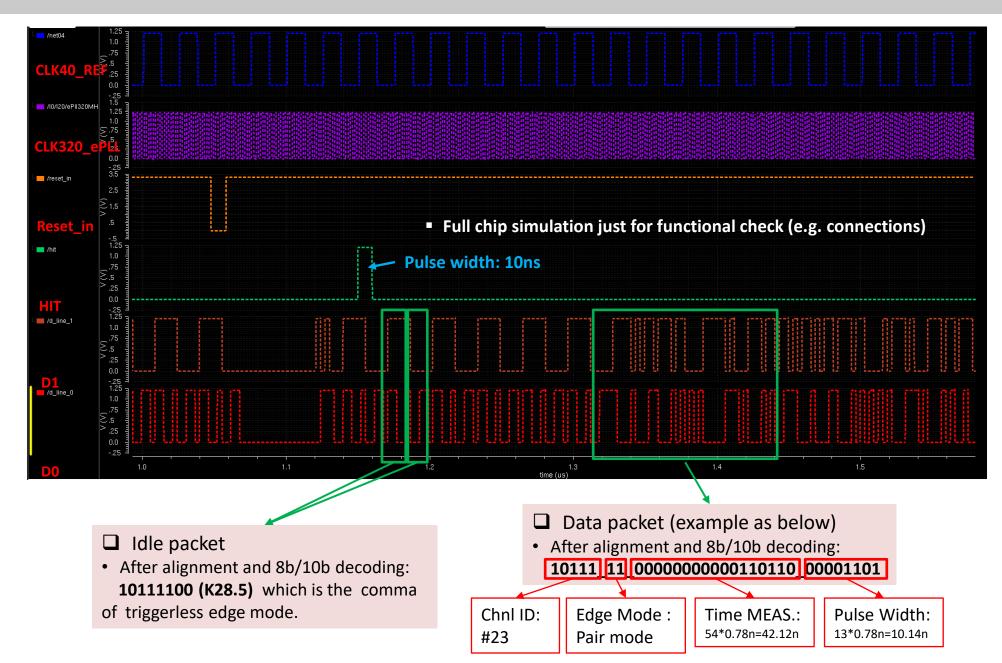
303859.00 ns Info: Channel 19, leading edge 0x04a4d (coarse time 0x1293, fine time 0x1), width 145, indicate b11 304297.00 ns Info: Channel 19, leading edge 0x04c76 (coarse time 0x131d, fine time 0x2), width 172, indicate b11 304719.00 ns Info: Channel 19, leading edge 0x04ca7 (coarse time 0x13a9, fine time 0x3), width 155, indicate b11 305125.00 ns Info: Channel 19, leading edge 0x050c9 (coarse time 0x1432, fine time 0x1), width 139, indicate b11 305531.00 ns Info: Channel 19, leading edge 0x050c9 (coarse time 0x1432, fine time 0x2), width 139, indicate b11 305569.00 ns Info: Channel 19, leading edge 0x052de (coarse time 0x14b7, fine time 0x2), width 109, indicate b11 305969.00 ns Info: Channel 19, leading edge 0x054d3 (coarse time 0x1534, fine time 0x3), width 168, indicate b11 306391.00 ns Info: Channel 19, leading edge 0x05705 (coarse time 0x1534, fine time 0x1), width 154, indicate b11 309828.00 ns Info: Channel 20, leading edge 0x06820 (coarse time 0x1a08, fine time 0x0), width 175, indicate b11 310219.00 ns Info: Channel 20, leading edge 0x06821 (coarse time 0x1a08, fine time 0x1), width 106, indicate b11 310656.00 ns Info: Channel 20, leading edge 0x06631 (coarse time 0x1a04, fine time 0x2), width 174, indicate b11

Triggerless Edge mode hit data

360010.00 ns Single hit leading mode test start==================================

364853.00 ns Info: Channel 0, edge 0x00244 (coarse time 0x0091, fine time 0x0), indicate b01 365228.00 ns Info: Channel 0, edge 0x00421 (coarse time 0x0108, fine time 0x1), indicate b01 365634.00 ns Info: Channel 0, edge 0x0063a (coarse time 0x018e, fine time 0x2), indicate b01 366009.00 ns Info: Channel 0, edge 0x0081f (coarse time 0x0207, fine time 0x3), indicate b01 366384.00 ns Info: Channel 0, edge 0x009f5 (coarse time 0x027d, fine time 0x1), indicate b01 366775.00 ns Info: Channel 0, edge 0x00be6 (coarse time 0x027d, fine time 0x2), indicate b01 367781.00 ns Info: Channel 0, edge 0x00def (coarse time 0x037b, fine time 0x3), indicate b01 367603.00 ns Info: Channel 0, edge 0x01011 (coarse time 0x0404, fine time 0x1), indicate b01

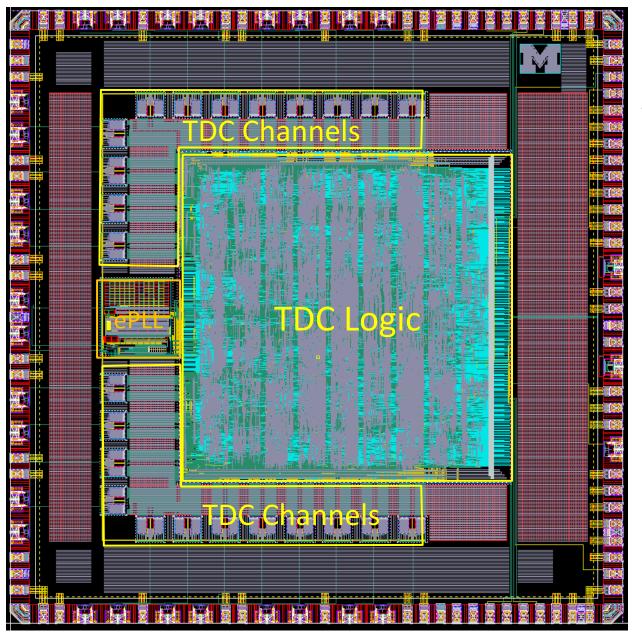
Trigger pair mode hit data


JTAG interface

110269.00 ns : JTAG ID_CODE check pass 110269.00 ns : Finish JTAG ID_CODE interface simulation 110269.00 ns : Start JTAG setup_0 interface simulation 113744.00 ns : JTAG setup_0 default check pass 117219.00 ns : JTAG setup_0 all 0s check pass 120694.00 ns : JTAG setup_0 all 1s check pass 124169.00 ns : JTAG setup_0 noramal operation check pass 124169.00 ns : Finish JTAG setup_0 interface simulation

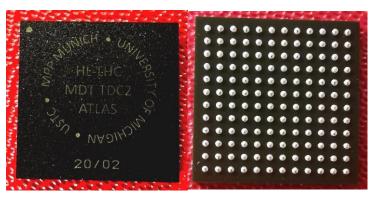
- Typical path delay shown, also checked with min/max delay
- TMR registers checked after place and route to ensure the redundant registers are not removed during synthesis.

Full chip Simulation (analog, 25°C, typical, 1.2V)



14

TDC ASIC Layout



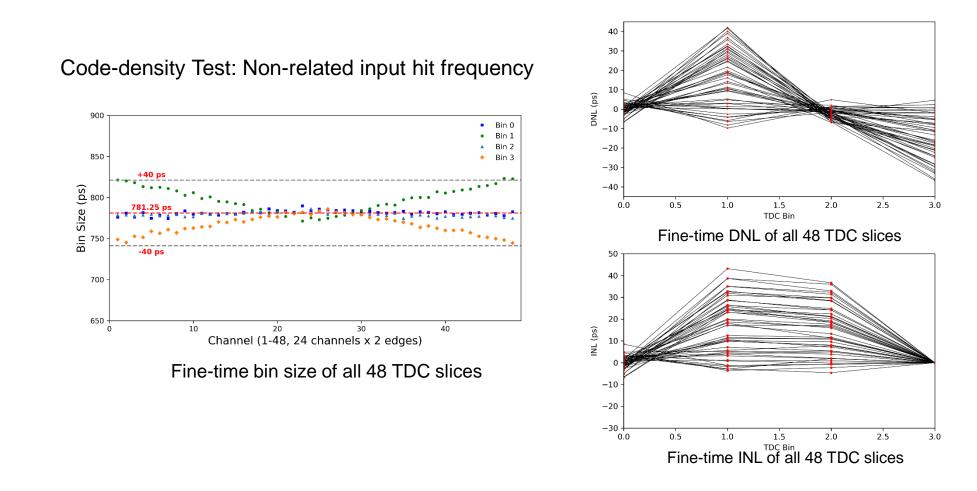
Die Dimension 3.7 mm * 3.7 mm

	1	2	3	4	5	6	7	8	9	10	11	12	
Α	GND	GND	CHNL7_P	CHNL6_P	CHNL5_P	CHNL4_P	CHNL3_P	CHNL2_P	CHNL1_P	CHNLO_P	TDO	TMS	Α
В	CHNL8_P	CHNL8_N	CHNL7_N	CHNL6_N	CHNL5_N	CHNL4_N	CHNL3_N	CHNL2_N	CHNL1_N	CHNLO_N	Reset_in	TRST	В
С	CHNL9_P	CHNL9_N	GND	тск	TDI	С							
D	CHNL10_P	CHNL10_N	GND			GND	GND	VDD_D	VDD_D	VDD_PST3	VDD_PST3	VDD_PST3	D
E	CHNL11_P	CHNL11_N	VDD_PST0			GND	GND	VDD_D	VDD_D	VDD_PST2	TDC_DOUT1_N	TDC_DOUT1_P	E
F	TDC_CLK_P	TDC_CLK_N	VDD_PST0			GND	GND	VDD_D	VDD_D	VDD_PST2	GND	GND	F
G	BCR_P	BCR_N	VDD_PST0			GND	GND	VDD_D	VDD_D	VDD_PST2	TDC_DOUT0_N	TDC_DOUT0_P	G
н	CHNL12_P	CHNL12_N	VDD_PST0			GND	GND	VDD_D	VDD_D	VDD_PST2	TTC_N	TTC_P	н
1	CHNL13_P	CHNL13_N	GND			GND	GND	VDD_D	VDD_D	VDD_PST1	VDD_PST1	VDD_PST1	J
к	CHNL14_P	CHNL14_N	GND	ASD DIN	к								
L	CHNL15 P	CHNL15_N	CHNL16 N	CHNL17_N	CHNL18_N	CHNL19_N	CHNL20_N	CHNL21_N	CHNL22_N	CHNL23_N	ASD LOAD	ASD DOUT	L
м	GND	GND	CHNL16_P	CHNL17_P	CHNL18_P	CHNL19_P	CHNL20_P	CHNL21_P	CHNL22_P	CHNL23_P	ASD_DOWN	ASD_TCK	м
	1	2	3	4	5	6	7	8	9	10	11	12	

BGA substrate pin assignment

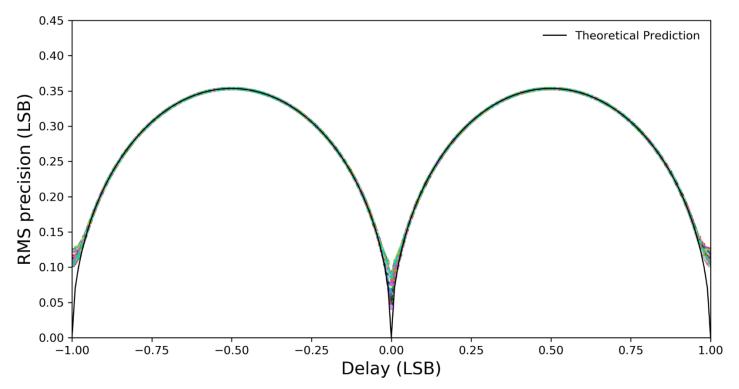
TDC ASIC with a 12x12 BGA package (1mm pitch), received in Jan. 2020.

- Introduction
- TDC ASIC design
- Testing of the TDC
- Summary


> Timing performance is tested using a pulse generator based on FPGA MMCM.

TDC test fixture

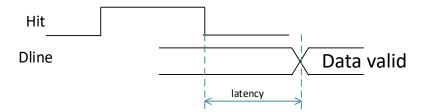
Performance of TDC bin size



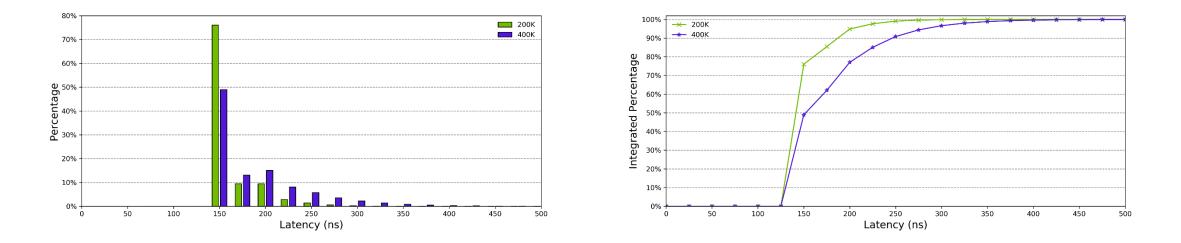
- > Bin sizes for all 48 TDC slices have been measured (24 channels * rising and falling edges)
- \blacktriangleright Bin size variation \pm 40 ps, INL and DNL \pm 40 ps

Performance of TDC RMS

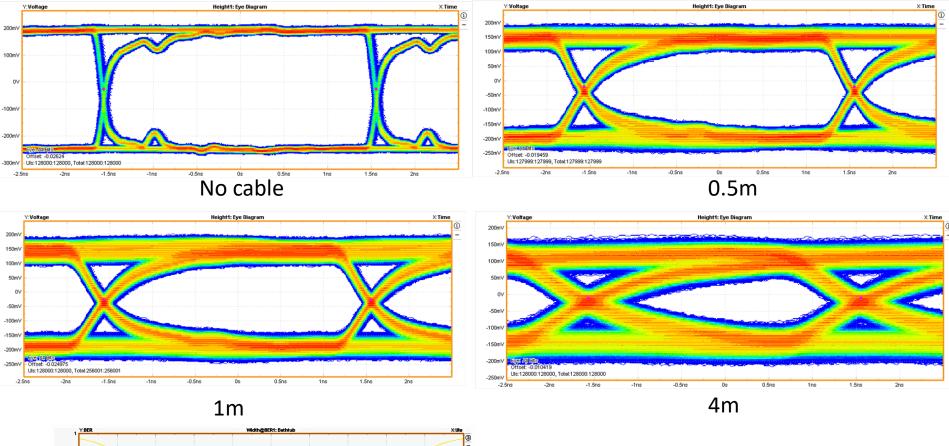
Path delay test

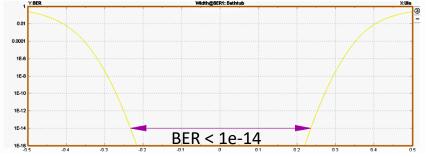


- > The timing resolution effect due to the TDC design is ~10% of the LSB (~80 ps)
- > The dominant contribution comes from the finite fine-time bin size (780/sqrt(12)=225 ps)
- The performances are similar to TDC1, indicating that the TMR and the BGA substrates do not make the performances degraded.


Performance of TDC latency

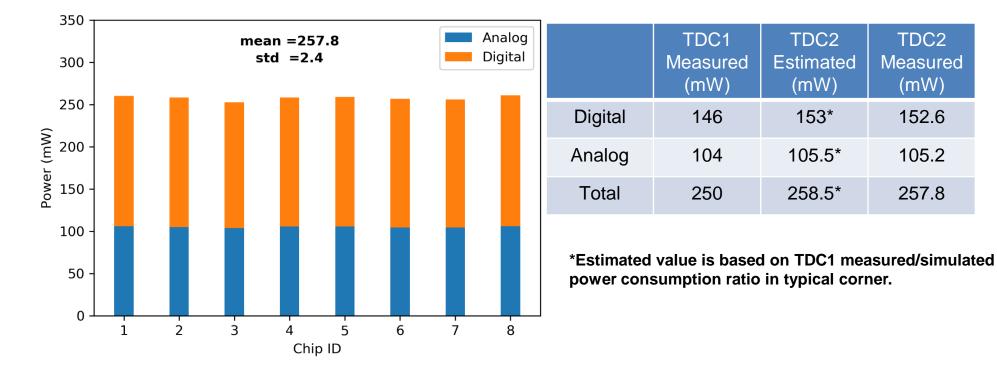
Trigger-less Latency




Latency definition here: From the trailing edge of input hit to the moment the corresponding data comes from output lines.

- ➤ Latency result for 200K/400K hit rate to all 24 channels.
- ➢ For 400K hit rate, after 350ns, 99% of the data was read out.

Performance of TDC output driver



Bathtub for 4m cable eye diagram

Requirement: Bit error rate(BER) < 1e-14</p>

TDC Power consumption

- > 1.2V power supply, 0.2ohm resistor in series after LDO (chip voltage drop: 25mV max).
- Power consumption measured for trigger-less mode running with an input hit rate of 660 kHz per channel (Max rate that TDC could readout).

Summary

- ➤ A third version of the TDC ASIC with TMR protection for the upgrade of the ATLAS MDT detector at the HL-LHC has been designed in TSMC 130nm CMOS technology;
- Timing resolution and latency of the TDC is checked and satisfy the requirement, and the TDC power consumption is ~260mW compared to 350mW for the AMT ASIC;
- Radiation tests for TID and SEU will be performed in the near future, and joint tests with other parts of the MDT front-end electronics (ASD, CSM) will be performed once they are received;
- Engineering run of 22,000 dies will be placed after FDR in late 2020 or early 2021, if all future tests are passed.

Thank you!