

ATLAS full-size RPC assembly and attenuation study

Xiangyu Xie On behalf of USTC RPC Team

Part 1: RPC assembly and test

- Project motivation
- RPC singlets assembly
- Cosmic-ray tests
- Conclusion

Part 2: RPC R&D for the signal attenuation

- Motivation
- Experiment set-up
- Results
- Conclusion

How and Technic

ATLAS Phase-II upgrade

- USTC-SDU-SJTU cluster will produce 50% BIS RPC singlets, Italy will produce the other 50%, and MPI will assemble BIS singlets into triplets
- Singlets will be assembled ant tested locally in China
- Contribution from China for the ATLAS collaboration
- Participate thin-gap RPC R&D

Milestone: full-size RPC singlets assembly and tests

- Done in BB5, CERN, last summer by: Yongjie, Marco, Xiangyu, Man, Kunyu
- To prove the ability of assembly and QC test of full-size singlet RPCs

Assembly: Gas gaps quality control

BIS7_L type gas gap

- Size: $1769 \times 1109 \ mm$, very similar with the size of Phase-II BIS RPCs
- Gas gap size: 1 mm
- Bakelite electrode size: 1.2 mm
- ✤I_{leak} HV scan
 - As QC procedure
 - Scan the leakage current for different high voltage applying
 - The on-site test after the one done by the manufactory

If high-Ileak occurs

- Apply working gas conditioning
- Apply Argon conditioning
- Abandoned if I_{leak} remains high

Assembly: FE board test and soldering

New FE board

- Based on Si & SiGe technology
- Including amplifiers and discriminators
- Deal with higher muon hit rates under radiation hardness
- Similar with Phase-II FEE

FE board test

Using pulse generator and counter

FE board soldering

- FE board soldered on the panel without fly wires
- Team members got trained
- Finished soldering for all the FE boards for the two singlets

Singlet cosmic-ray test: set-up

Trigger system

- 3+3 scintillators
- DAQ system:
 - TDC: V1190a, with 100 ps LSB
 - VME controller: V1718
 - Online monitor: details in next page

Test areas division

- Due to the limited coverage of scintillators
- Divided into five areas, covering all η and ϕ channels

Singlet cosmic-ray test: Online monitor

Motivation

- Monitor RPC performance while data taking
- Speed-up the tests by intuitive real-time outputs

Functions

- Control the VME and TDC
- Efficiency
- 2D/1D hit map
- Noise map/noise rate
- Cluster-size
- Raw time resolution

Open source: git repo

Singlet cosmic-ray test: efficiency

Algorithm

• η triggered && ϕ triggered

Homogeneous performance for all areas at 5.7 kV

- Featuring the same performance with other BIS7 singlets
- P.s. RPC designed eff is reached by beam test

Area 1	93.0%	92.0%
Area 2	91.8%	95.2%
Area 3	94.0%	95.9%
Area 4	93.9%	91.8%
Area 5	90.8%	92.4%

Singlet cosmic-ray test: cluster-size

Cluster-size: the number of strips fired by one muon hit

- Strips are required to be adjacent to each other
- Expected to be less than three
- * η panel cluster ~1.4
- * ϕ panel cluster size ~2.4
- The difference in cluster-size distribution due the wrong matching resistors
 - Additional resistors soldered onto the readout panels in parallel with original ones, in order to lower the matching resistor

Singlet cosmic-ray test: noise rate

- Studied with randomly triggered data
- Average noise rate for η and ϕ panels at 5.7 kV
 - η panel: 1.9 Hz/cm²
 - ϕ panel: 1.4 Hz/cm²

\odot One noisy η channel, which is next to the low voltage supply

Singlet cosmic-ray test: time resolution

Selections

- Cluster-size = 1 for η and ϕ panels
- η, ϕ channels of two singlets are identical
- $\mathbf{\bullet} \sigma_t(\eta) = 538 \, ps, \sigma(\phi) = 578 \, ps$
 - Time walk correction not considered

Conclusion of singlets assembly and tests

- Two RPC singlets been assembled and tested with good performance
 - Efficiency measured to be 93% for both singlets at 5.7 kV
 - Cluster size < 3
 - Noise rate < 2 Hz/cm²
 - Time resolution < 600 ps
- One singlets would be installed onto ATLAS during the Phase-I upgrade
- The USTC RPC team showed the ability to perform RPC singlet assembly and test

RPC R&D: signal attenuation study

After avalanche, before FEE: signal induction and propagation

- Signal induction loss has been studied extensively
- Signal attenuation in propagation remains unclear
- Smaller signal for the thin-gap RPCs
 - Potential signal attenuation is crucial for the trigger efficiency
- Simulation results indicates attenuation exist
 - Correlated with the graphite layer

Readout scheme

- Readout strips kept afloat at left end
- Signal 0 and 1 induced identically
- Signal 1 got reflected at left end
- Signal 1 readout at right end, following signal 0, with different propagation distance (21)
- Readout by oscilloscope without FEE

Reconstruction of propagation distance difference

- $2l = LE_{difference} \times velocity$
- Study the loss in charge as a function of the propagation distance difference(2l)

20/08/12

Definition

- Charge: integral between 10% points
- Charge ratio: *Charge*_{sig1}/*Charge*_{sig0}
- ✤Quantify the attenuation rate A_{charge}
 - Fit function: $y = e^{-A_{\text{Charge}} \cdot x}$
 - $A_{\text{charge}} = 0.106 \pm 0.001 \, [\text{m}^{-1}]$

Signal attenuation rate Vs. graphite ρ_s

Same measurements performed on different RPCs

- Surface resistivity of the graphite layers $\rho_s = 10k$, 100k, 1M, $10M \Omega/Sq$
- Strongly depending on the ρ_s
- When ρ_s is high, attenuation can be suppressed

More resistive graphite is better?

\bullet Voltage drop ΔV for BI RPCs

- Caused by current flowing along the graphite layer
- $\Delta V(l) = \frac{1}{2} rq\rho_s l^2$
- r, the count rate, = $300 Hz/cm^2$
- q, average charge delivered per count, = 2 pC for thin-gap RPC
- ρ_s , the graphite surface resistivity, = 620 $k\Omega/Sq$
- For BI RPCs, $\Delta V_{Max} = \Delta V(2.5) \approx 10 V$
- Currently negligible
- Need to be taken care if
 - RPC getting larger
 - Cope with higher count rate

Conclusion of signal attenuation study

Attenuation in signal propagation has been measured

- High surface resistivity of graphite layer could suppress the attenuation in propagation
- The V_{th} of the FEE should be taken care
- Phenomenon met by CMS RPC group could be explained

