Global fit of BSM with CEPC using GAMBIT

Yang Zhang (张阳), Monash University

2020.07.31

Our Plan

- ✓ Build the CEPC likelihood in GAMBIT
 - Using present experimental central values
- √ Postprocess the published CMSSM / NUMH1 / NUHM2 / MSSM global results
 - Experimental constraints in latest GAMBIT
 - CEPC proposed results
- √ Analysis the results

Working on this!

Besides the constraints, the calculation of observations are also improved.

People: Peter Athron, Csaba Balazs, Andrew Fowlie, Wei Su, Yang Zhang from GAMBIT

Liangliang Su, Lei Wu from Nanjing Normal University

Using slides from

Global fits

What? Why? How?

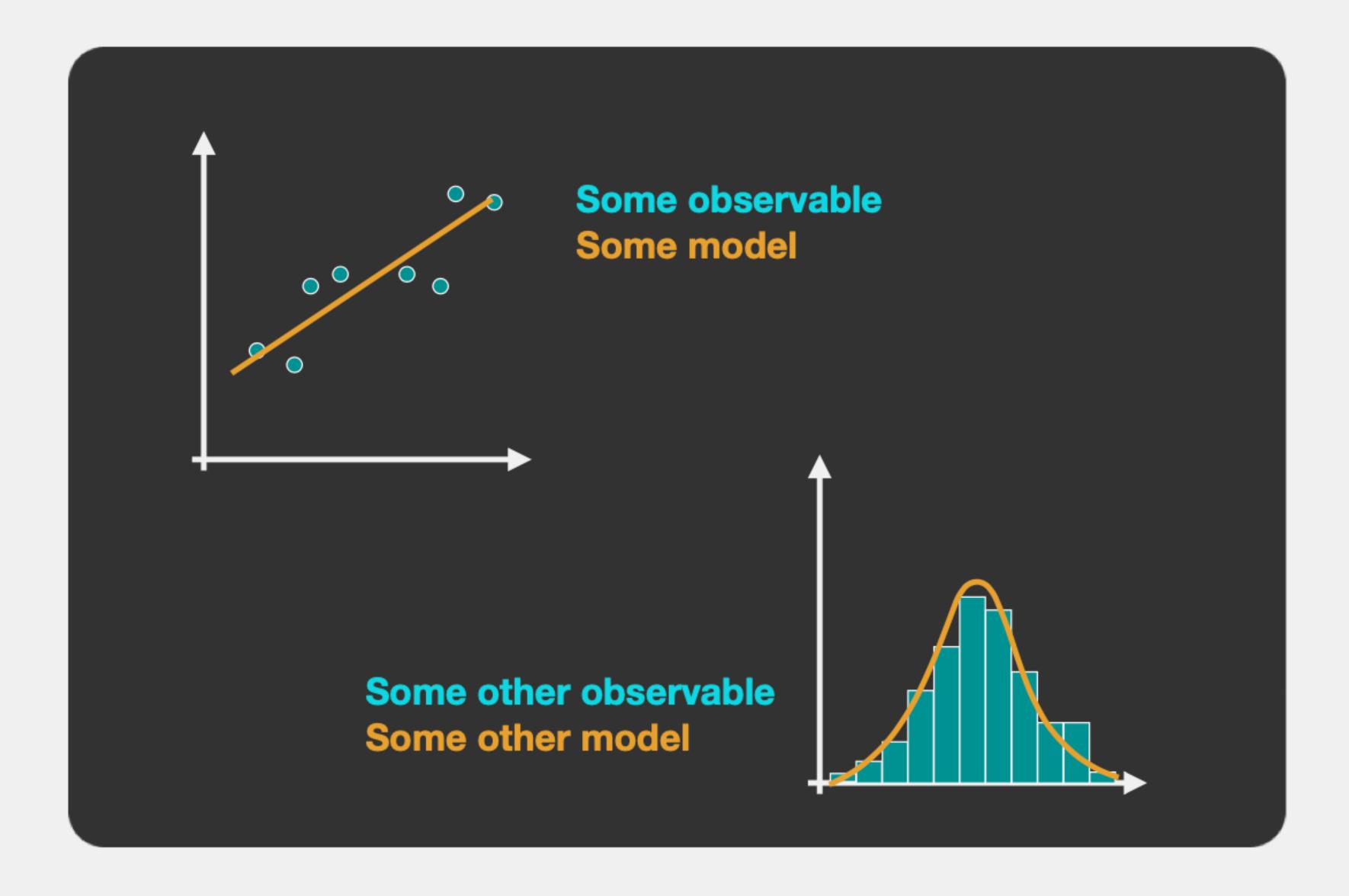
Investigating supersymmetry with GAMBIT

Anders Kvellestad, Imperial College London on behalf of the GAMBIT Collaboration

PRACEdays 2019, May 14 2019, Poznan

Imperial College London

Statistical fits

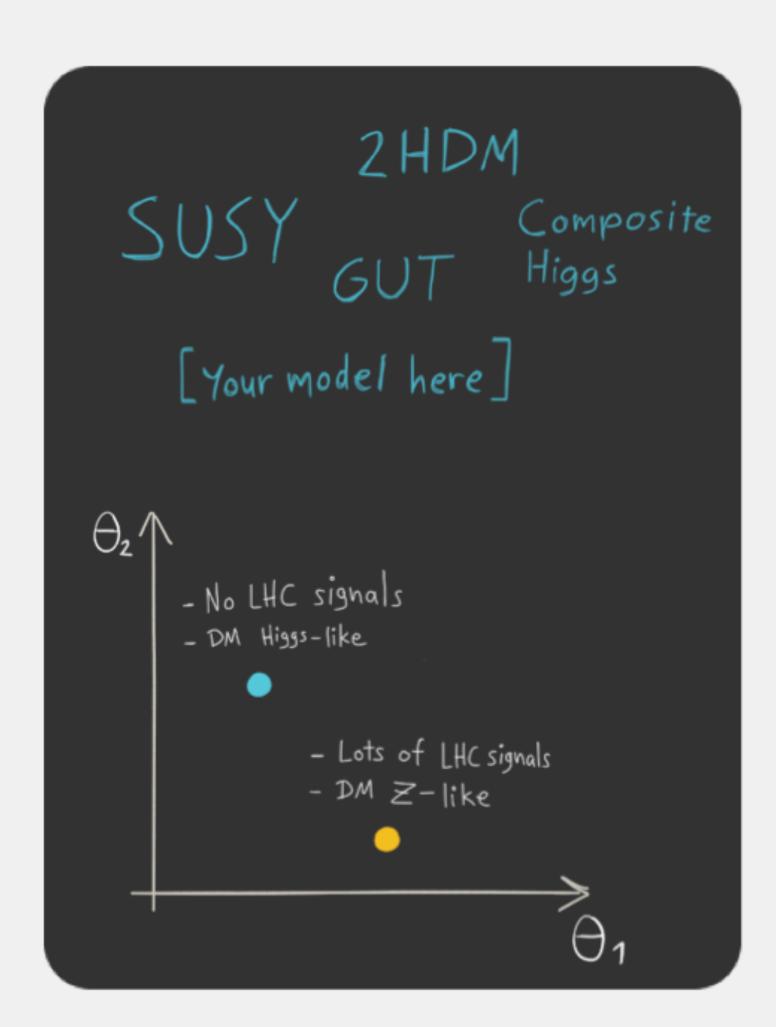


Global fits



Comparing new theories to data

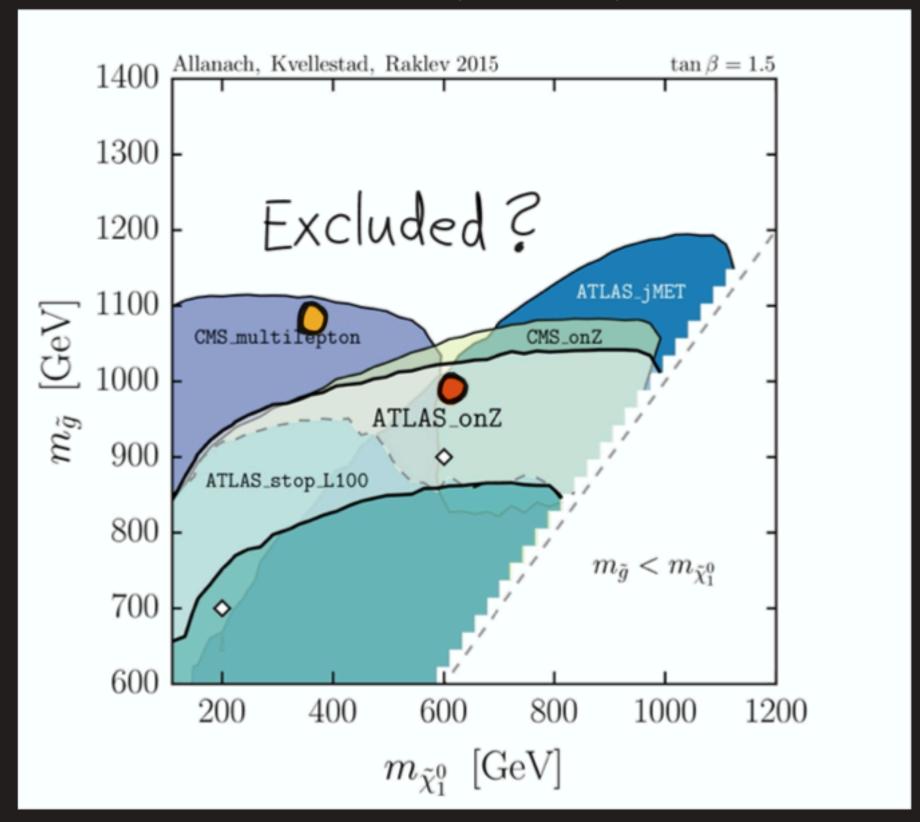
- Lots of theories for physics beyond the Standard Model
- For each theory, a parameter space of varying phenomenology
- Many different experiments can constrain each theory



Only a couple of parameters:

Compare preferred/excluded regions for different analyses

- Simple to understand (at a qualitative level)
- Per-point interpretation is not straightforward
- Gets worse with increasing number of experimental analyses

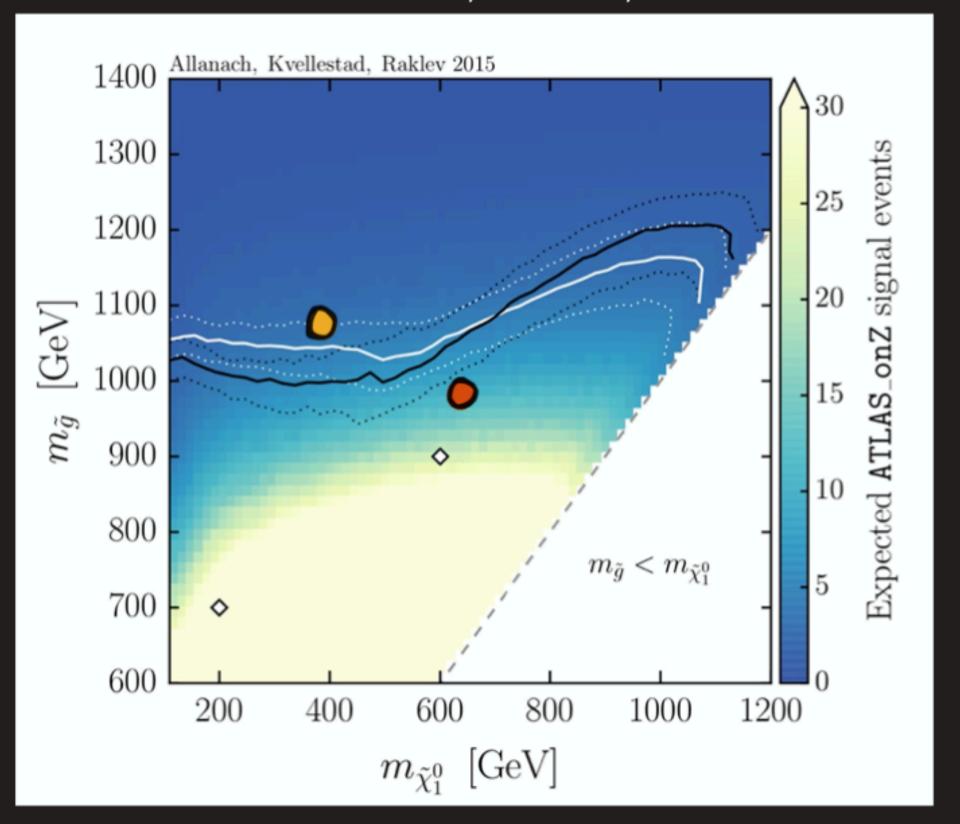


Many different searches:

Combine searches in a total likelihood function

- + Clear per-point interpretation
- ...but what if there are many parameters?

Allanach, Kvellestad, Raklev: 1504.02752



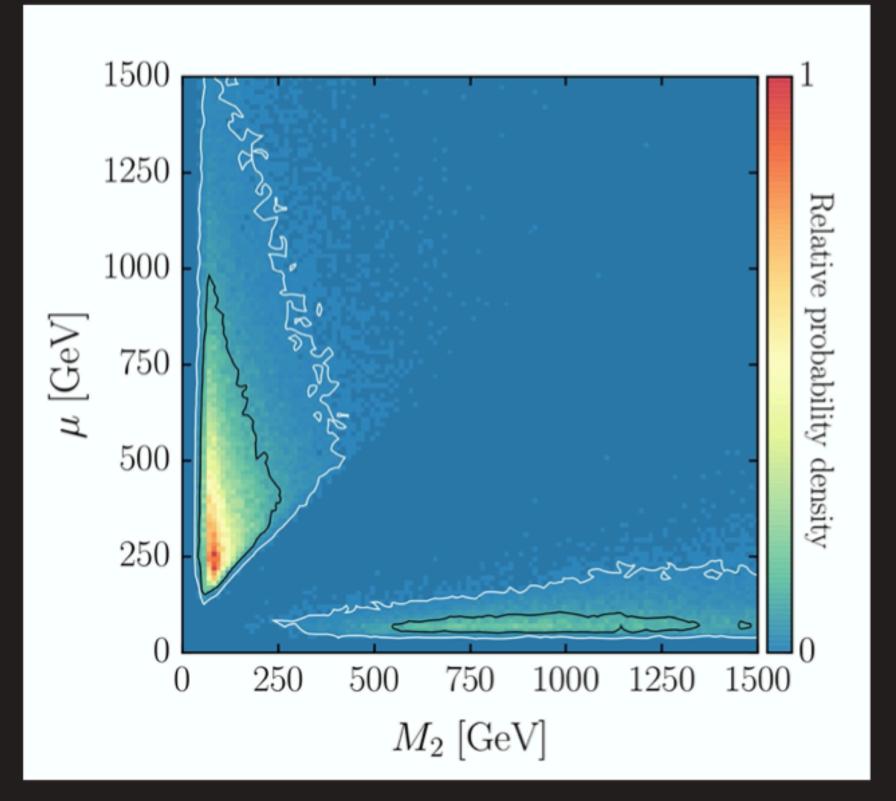
Many parameters and many constraints:

Perform a statistical fit to all available data — a global fit

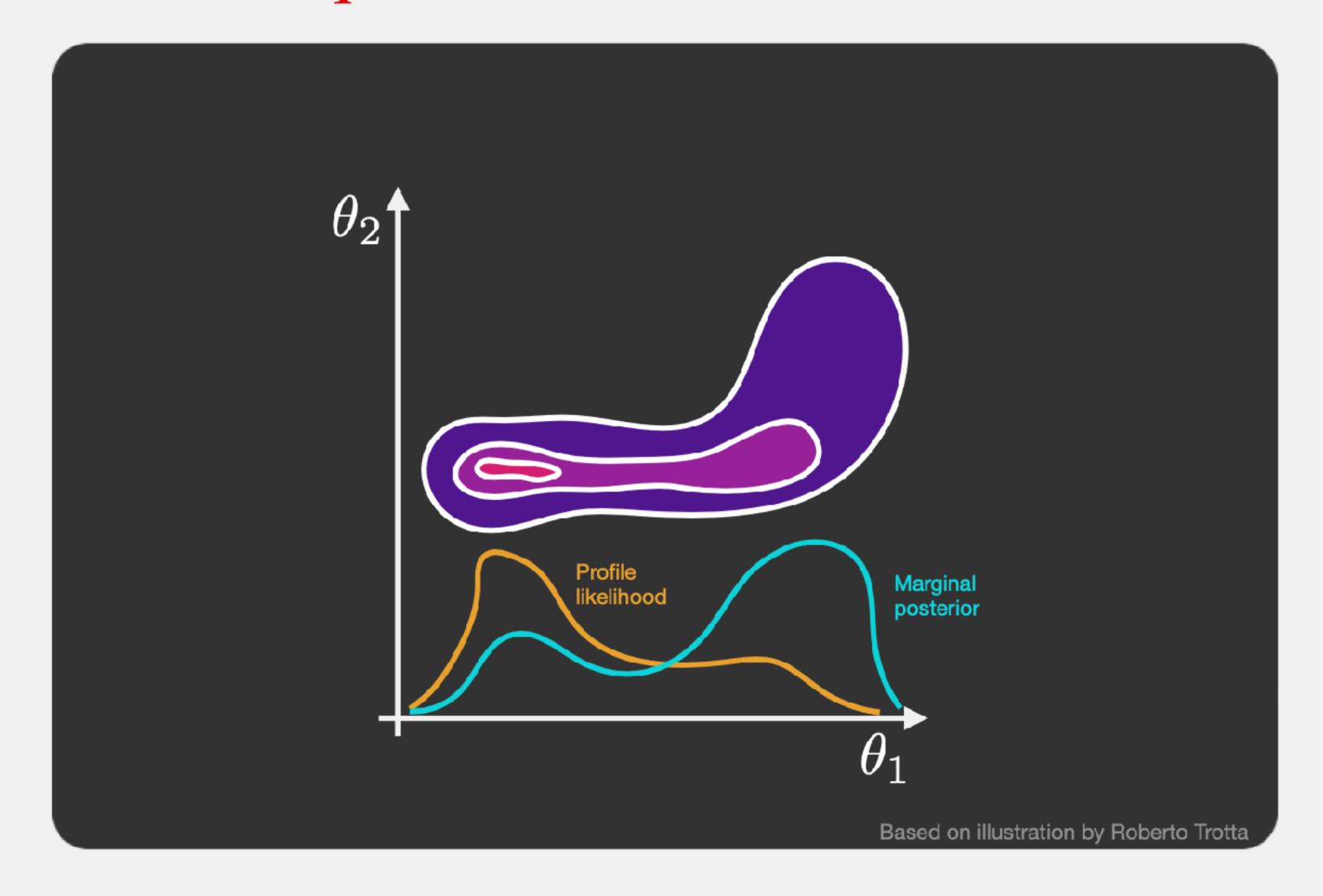
Theory
$$\rightarrow f(x;\theta)$$

Experiment $\rightarrow L(\theta) = f(x_{data}; \theta)$

- Explore likelihood across entire parameter space (smart sampling)
- Interpretation: frequentist/Bayesian
- Project down to 1 or 2
 parameters (profile/marginalise)



Different questions, different answers



The basic steps of a global fit

- Choose your model and parameterisation
- Construct the combined likelihood function including observables from collider physics, dark matter, flavor physics, +++

$$\mathcal{L} = \mathcal{L}_{\text{collider}} \mathcal{L}_{\text{DM}} \mathcal{L}_{\text{flavor}} \mathcal{L}_{\text{EWPO}} \dots$$

- Use sophisticated scanning techniques to explore the likelihood function across the parameter space of the theory
- Test parameter regions in a statistically sensible way not just single points (parameter estimation)
- Test different theories the same way (model comparison)

It's difficult...

[large number of observables]

X

[long calculation time per observable per parameter point]

X

[huge number of points required to explore parameter space]

GAMBIT

The Global And Modular BSM Inference Tool

- · A general framework for BSM global fits
- Fully open source
- Modular design: can be extended with
 - new models
 - new likelihoods
 - new theory calculators
 - new scanning algorithms
- Use external codes (backends) as runtime plugins
 - Supported languages:
 - C, C++, Fortran, Python and Mathematica
- Two-level parallellization with MPI and OpenMP
- Hierarchical model database
- Flexible output streams (ASCII, HDF5, ...)
- Many scanners and backends already included

gambit.hepforge.org

Anders Kvellestad 11