

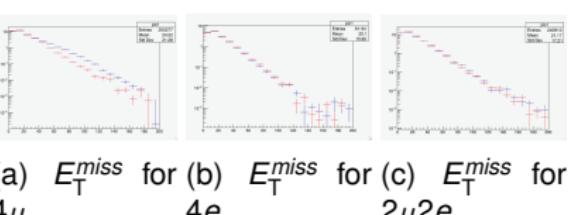



# 4 $\ell$ +MET: Muon-jets overlap on EMPFlow

A Fadol, M E Thabed, X RUAN , Y Fang, S von Buddenbrock  
T Lagouri, Y Fang, O Mtintsilana, S H Tlou, B Mellado, X Sun

August 10, 2020




# EMPFlow bug fix checks

## Introduction

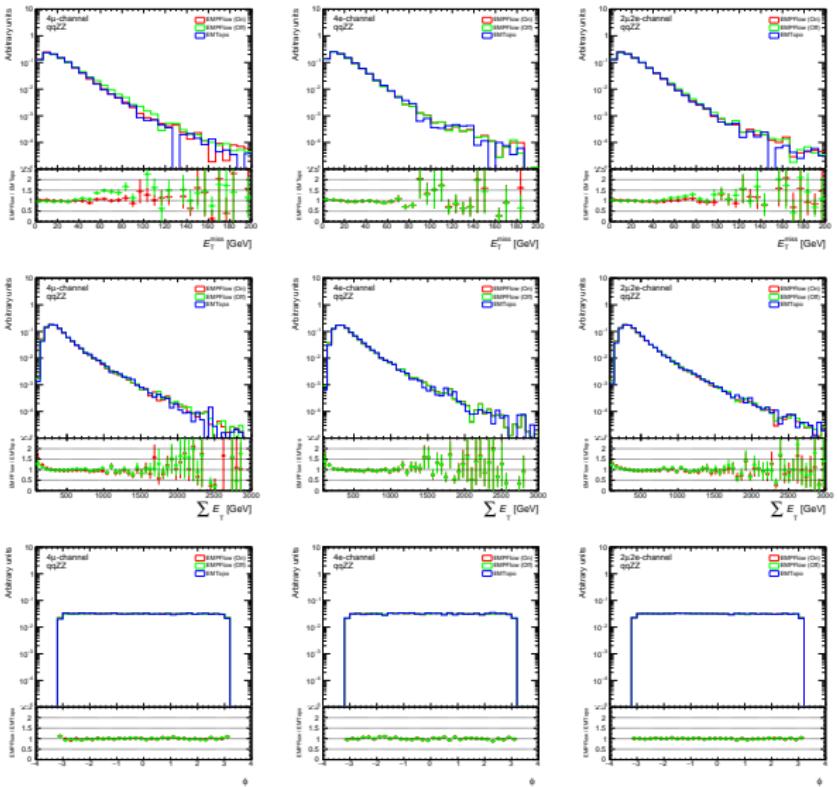
Following the bug on the Met calculation we observed, and the fix that implemented by the met experts on 21.2.124 release, we present a comparison between EMPFlow bug fix (On), EMPFlow bug fix (Off) and EMTopo.

- The fake MET has 50% difference between PFlow and Topo.
- The significance is 20% worse than Topo samples.

|                                                                                                                         | $(m_{\tau\tau}, m_{\eta}) = (200, 220)$ | $qq\bar{Z}Z$ | $qq\bar{Z}Z$ | $qq\bar{Z}Z$ | $t\bar{t}$ | $Z + jets$ | $t\bar{t}$ | $VVV$     | $WZ$       | $\sqrt{s}$ |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|--------------|--------------|------------|------------|------------|-----------|------------|------------|
| $g$                                                                                                                     | 64.17±0.31                              | 2523.81±0.10 | 48.07±0.13   | 390.20±0.72  | 26.36±0.05 | 13.96±0.85 | 2.93±0.22  | 1.75±0.17 | 18.18±0.12 | 2.005      |
| B-ratio                                                                                                                 | 38.57±0.17                              | 2024.14±0.09 | 32.02±0.13   | 380.04±0.69  | 18.32±0.18 | 12.94±0.95 | 1.60±0.14  | 1.25±0.12 | 17.53±0.10 | 2.007      |
| $Z \rightarrow ee$                                                                                                      | 3.10±0.17                               | 70.91±0.17   | 3.08±0.17    | 380.04±0.69  | 18.32±0.18 | 12.94±0.95 | 1.60±0.14  | 1.25±0.12 | 17.53±0.10 | 2.007      |
| $Z \rightarrow ee$ & $Z \rightarrow \mu\mu$                                                                             | 31.04±0.17                              | 70.91±0.17   | 28.08±0.17   | 18.81±0.14   | 1.65±0.16  | 0.38±0.42  | 0.96±0.18  | 1.81±0.21 | 8.11±0.08  | 2.014      |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$                                                                           | 31.11±0.17                              | 63.36±1.07   | 28.08±0.17   | 18.81±0.14   | 1.65±0.16  | 0.38±0.42  | 0.96±0.18  | 1.81±0.21 | 8.11±0.08  | 2.014      |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$                                                              | 28.03±0.18                              | 49.31±1.07   | 1.56±0.17    | 10.33±0.38   | 1.65±0.16  | 0.38±0.42  | 0.96±0.18  | 1.75±0.22 | 8.08±0.08  | 2.001      |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$                                                      | 36.75±0.18                              | 74.64±0.08   | 1.78±0.17    | 1.78±0.10    | 0.24±0.29  | 0.81±0.18  | 1.60±0.17  | 1.60±0.17 | 1.60±0.17  | 2.001      |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$                                               | 28.03±0.18                              | 49.31±1.07   | 1.56±0.17    | 10.33±0.38   | 1.65±0.16  | 0.38±0.42  | 0.96±0.18  | 1.75±0.22 | 8.08±0.08  | 2.001      |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$                                         | 18.57±0.13                              | 63.66±0.83   | 1.82±0.13    | 1.05±0.11    | 1.05±0.11  | 0.48±0.41  | 0.82±0.09  | 1.05±0.12 | 5.67±0.07  | 4.028      |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$                                   | 18.51±0.12                              | 30.75±0.41   | 1.86±0.07    | 6.27±0.10    | 2.86±0.13  | 0.60±0.09  | 0.96±0.03  | 1.66±0.12 | 1.03±0.06  | 4.028      |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$                      | 12.32±0.11                              | 11.86±0.38   | 1.86±0.07    | 2.93±0.12    | 0.60±0.09  | 0.96±0.03  | 1.66±0.12  | 1.61±0.06 | 5.017      |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$ & $VVV$              | 12.32±0.11                              | 11.86±0.38   | 1.86±0.07    | 2.93±0.12    | 0.60±0.09  | 0.96±0.03  | 1.66±0.12  | 1.61±0.06 | 4.997      |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$ & $VVV$ & $WZ$       | 6.85±0.09                               | 1.96±0.17    | 1.32±0.04    | 0.92±0.04    | 0.60±0.09  | 0.96±0.03  | 1.66±0.12  | 1.72±0.07 | 3.86±0.05  |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ | 4.97±0.07                               | 2.81±0.12    | 1.05±0.01    | 1.07±0.01    | 0.60±0.09  | 0.96±0.04  | 1.76±0.05  | 1.75±0.05 | 1.75±0.05  |            |
| <hr/>                                                                                                                   |                                         |              |              |              |            |            |            |           |            |            |
|                                                                                                                         | $(m_{\tau\tau}, m_{\eta}) = (990, 220)$ | $qq\bar{Z}Z$ | $qq\bar{Z}Z$ | $qq\bar{Z}Z$ | $t\bar{t}$ | $Z + jets$ | $t\bar{t}$ | $VVV$     | $WZ$       | $\sqrt{s}$ |
| $g$                                                                                                                     | 64.31±0.24                              | 2530.45±5.70 | 344.66±0.71  | 4.94±0.05    | 3.87±0.44  | 2.55±0.23  | 1.90±0.11  | 2.66±0.03 |            |            |
| B-ratio                                                                                                                 | 60.07±0.23                              | 2344.48±5.70 | 334.66±0.69  | 4.72±0.02    | 3.63±0.84  | 2.27±0.16  | 1.77±0.11  | 2.58±0.03 |            |            |
| $Z \rightarrow ee$                                                                                                      | 32.06±0.17                              | 787.13±2.63  | 123.36±0.23  | 3.66±0.02    | 3.53±0.83  | 2.27±0.13  | 1.44±0.08  | 2.34±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \mu\mu$                                                                             | 30.06±0.17                              | 787.13±2.63  | 123.36±0.23  | 3.66±0.02    | 3.53±0.83  | 2.27±0.13  | 1.44±0.08  | 2.34±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$                                                                           | 27.40±0.17                              | 457.01±0.45  | 106.88±0.39  | 1.93±0.03    | 1.49±0.83  | 1.27±0.13  | 0.83±0.08  | 2.59±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$                                                              | 20.30±0.16                              | 409.26±0.53  | 72.34±0.32   | 1.23±0.02    | 1.43±0.83  | 1.21±0.13  | 0.78±0.08  | 2.68±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$                                                      | 20.29±0.16                              | 217.36±0.12  | 41.32±0.12   | 1.23±0.02    | 1.20±0.82  | 1.29±0.12  | 0.78±0.08  | 3.68±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$                                               | 23.40±0.15                              | 104.26±0.18  | 10.13±0.18   | 0.82±0.02    | 0.82±0.82  | 1.04±0.12  | 0.77±0.08  | 3.77±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$                                         | 19.94±0.13                              | 48.43±0.81   | 10.13±0.17   | 0.80±0.07    | 1.04±0.04  | 0.95±0.13  | 1.76±0.04  | 3.92±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$                                   | 15.63±0.12                              | 22.57±0.33   | 4.78±0.10    | 0.81±0.04    | 0.86±0.01  | 1.76±0.01  | 5.93±0.02  |           |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$                      | 9.99±0.09                               | 10.77±0.23   | 4.78±0.10    | 0.81±0.04    | 0.86±0.01  | 1.76±0.01  | 5.93±0.02  |           |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$ & $VVV$              | 8.59±0.09                               | 4.81±0.15    | 0.88±0.04    | 0.85±0.01    | 0.81±0.05  | 0.55±0.06  | 1.76±0.05  | 6.05±0.02 |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$ & $VVV$ & $WZ$       | 6.61±0.08                               | 2.36±0.10    | 0.43±0.03    | 0.49±0.01    | 0.01±0.02  | 0.45±0.01  | 1.25±0.05  | 3.535     |            |            |
| $Z \rightarrow ee$ & $Z \rightarrow \tau\tau$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ & $B$ & $t\bar{t}$ & $VVV$ & $WZ$ & $g$ | 4.74±0.07                               | 1.14±0.07    | 0.19±0.02    | 0.40±0.01    | 0.01±0.03  | 0.39±0.07  | 2.77±0.05  | 4.360     |            |            |

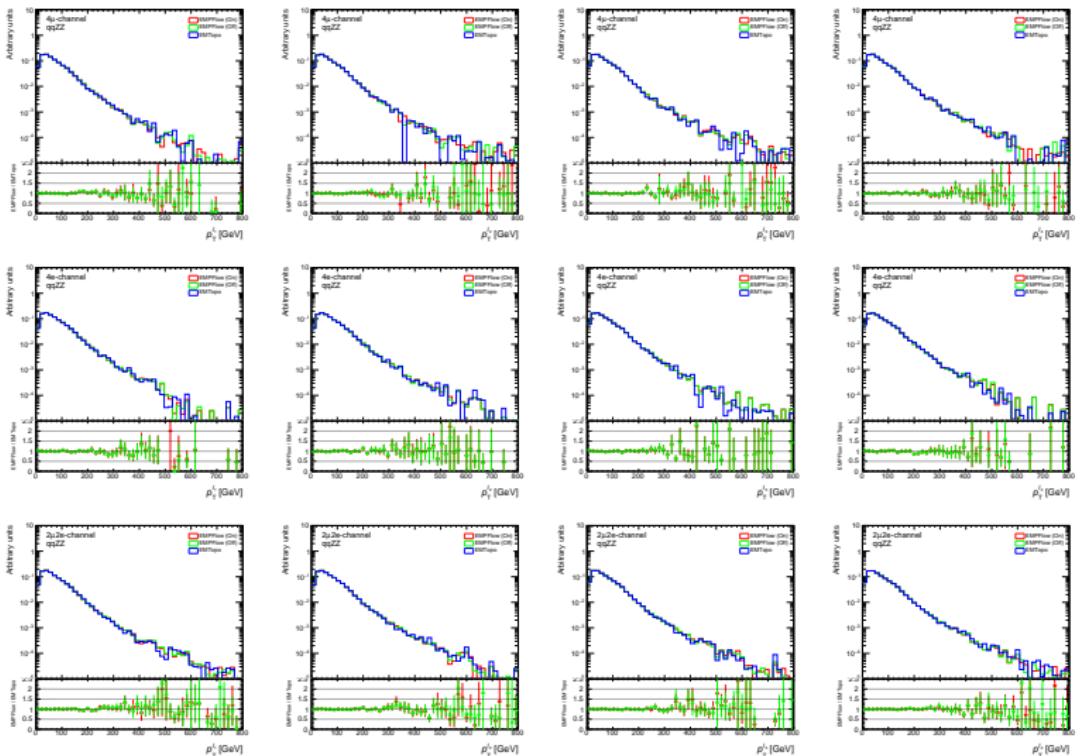


MET for  $qq\bar{Z}Z$ : PFlow (blue) & Topo (red)


EMPFlow (top) and EMTopo (bottom)

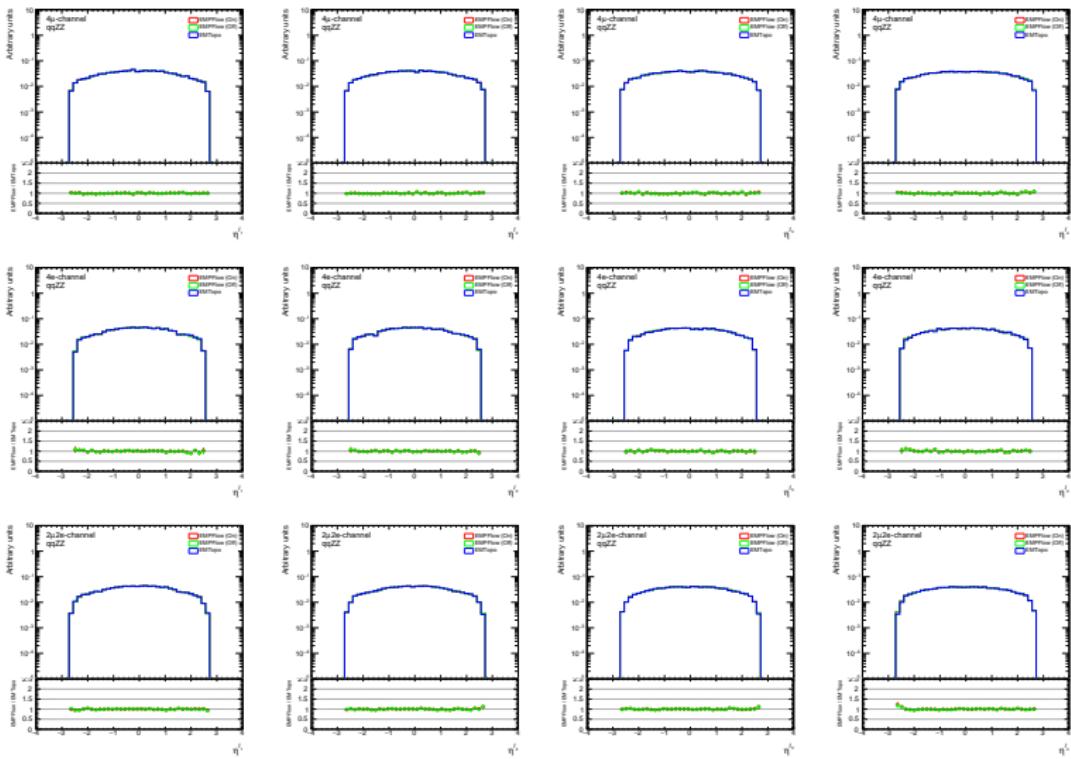
# EMPFFlow bug fix checks

- The bug was on the METMaker and only affects the Met calculation.
- Next slide shows the Met distribution and it shows the effect after the bug fixed.
- $qq\text{ZZ}$  sample with 364252 DSID and p4191 p-tag (an official sample) is used to perform the check.
- This sample labelled as EMPFlow (On) with red colour after setting DoMuonPFlowBugfix to true on the HZZAnalRun2Code.
- The EMPFlow (Off), green colour, and EMTopo, blue colour, are  $qq\text{ZZ}$  sample with p3872 p-tag generated by 21.2.91 release.
- The ratio is shown for EMPFlow (On) and EMPFlow (Off) to EMTopo for each distribution.


# Kinematic distributions for Met

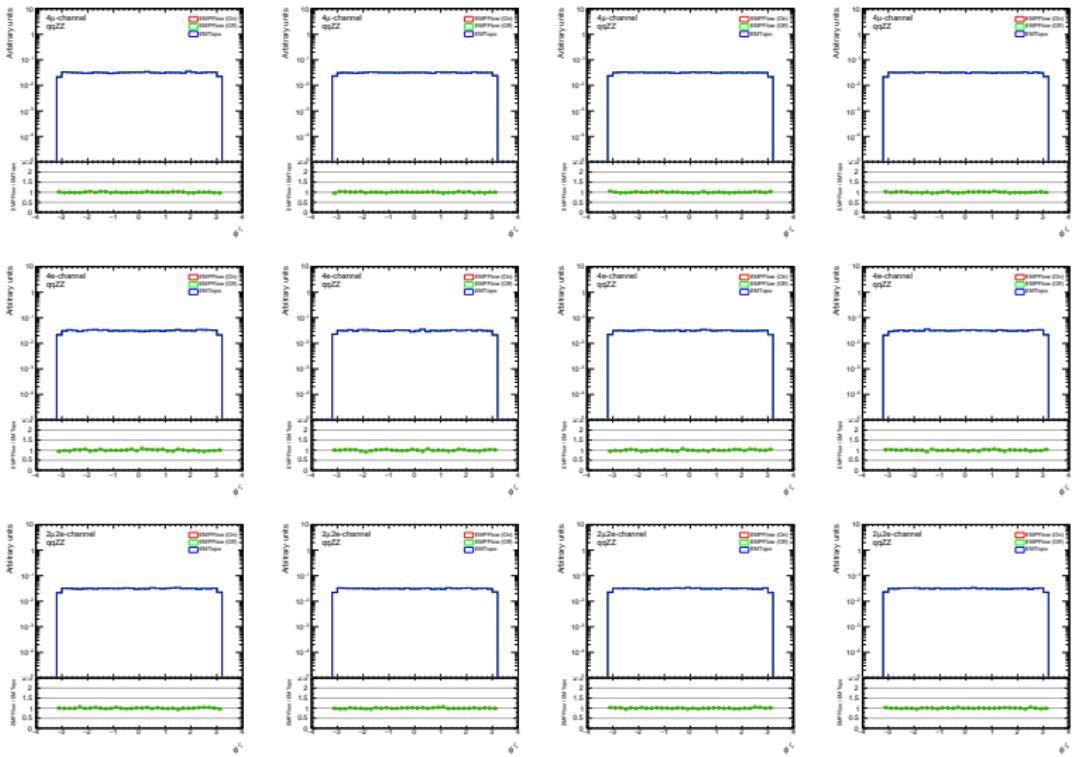
The  $E_T^{\text{miss}}$ ,  $\sum E_T$  and  $\phi$




# Kinematic distributions for the leptons

The transverse momentum of individual lepton

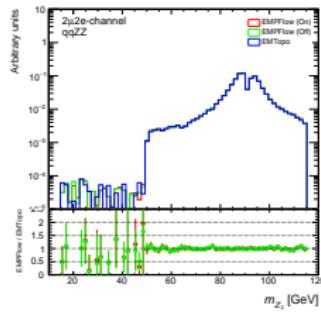
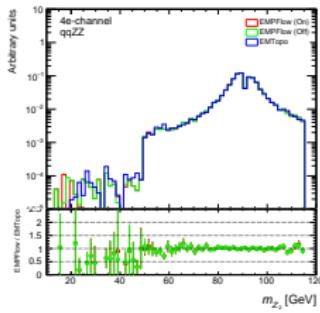
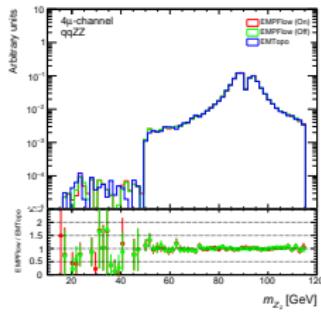
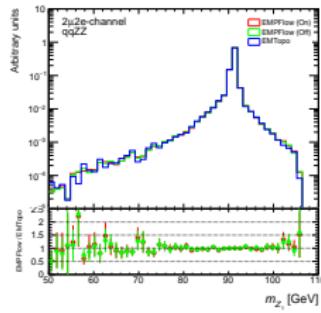
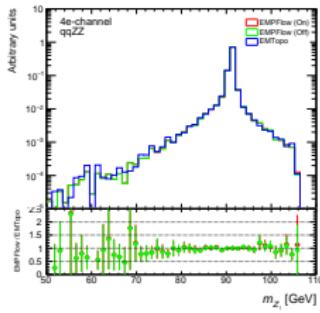
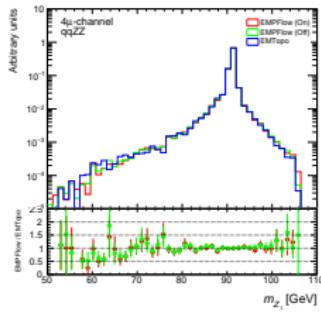



## Kinematic distributions for the leptons

## The $\eta$ of individual lepton

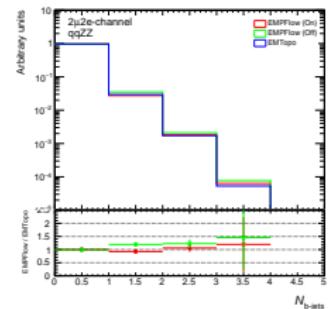
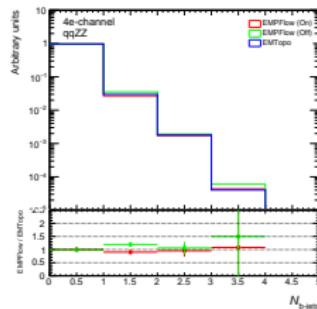
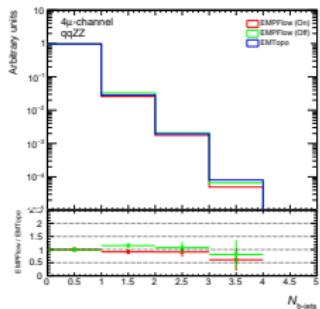
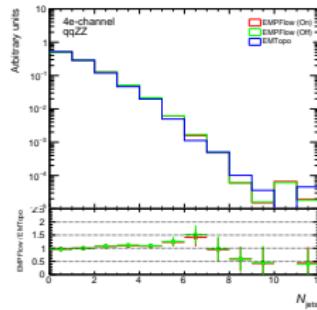
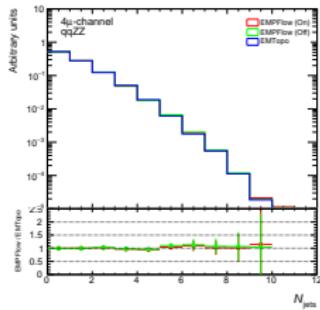


# Kinematic distributions for the leptons







The  $\phi$  of individual lepton

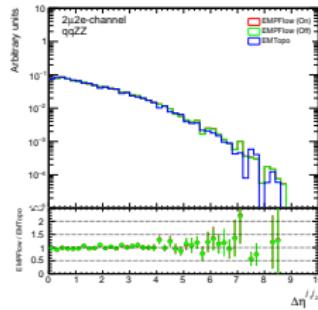
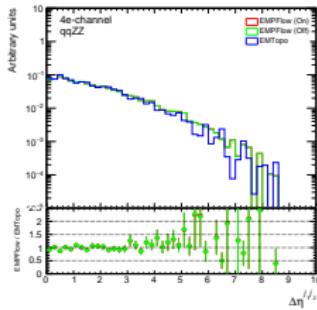
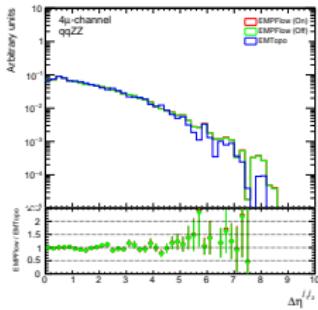
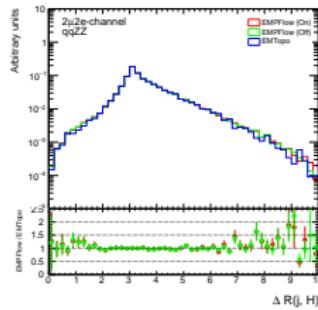
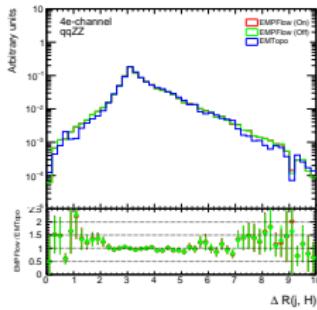
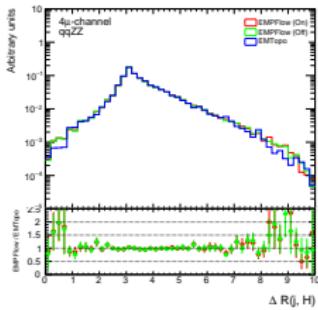


# Kinematic distributions for the di-lepton






The  $m_{Z_1}$  and  $m_{Z_2}$  of di-lepton system

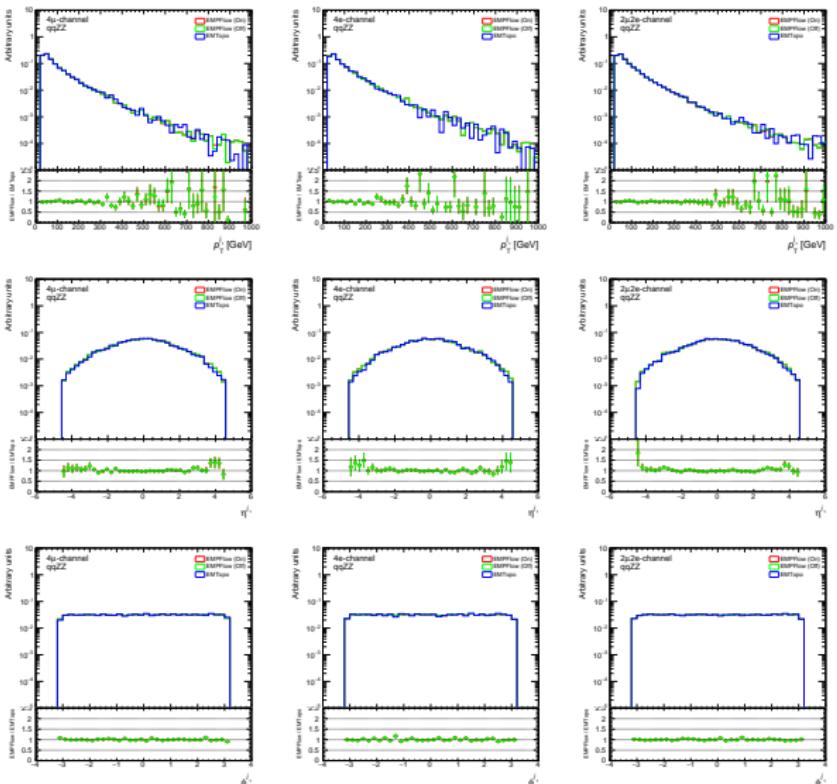
8









# Kinematic distributions for the jets

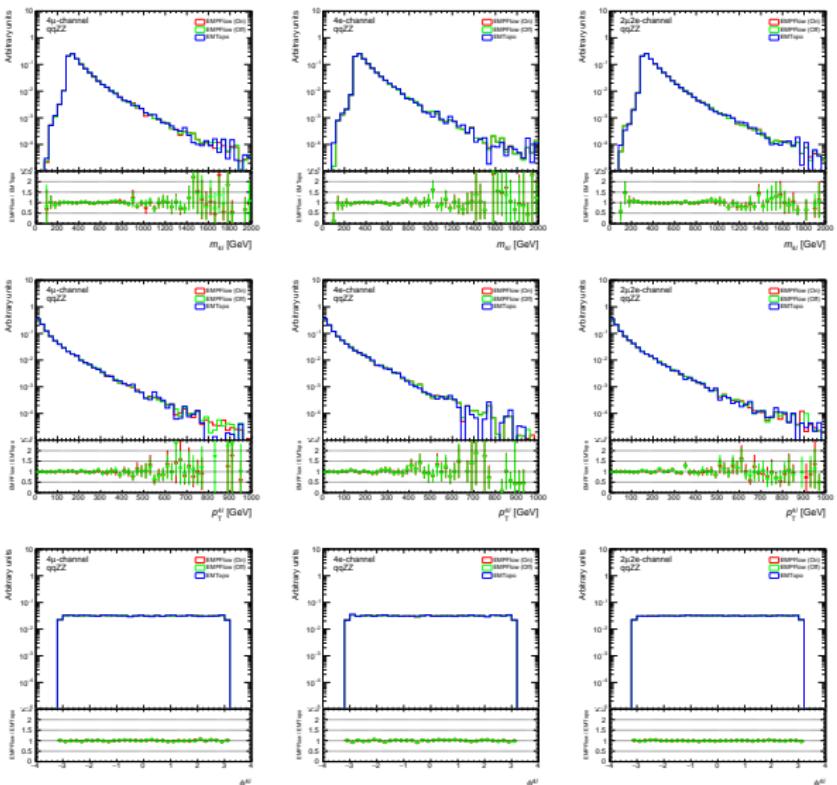
The momentum,  $N_{\text{jets}}$ , and  $N_{\text{b-jets}}$  of leading jet




# Kinematic distributions for the jets

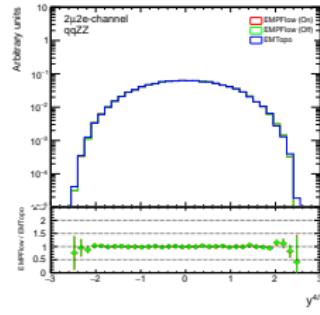
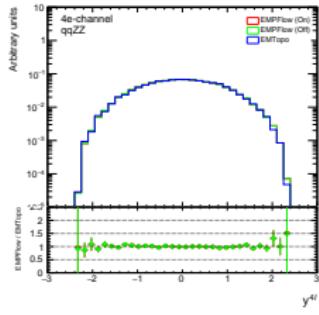
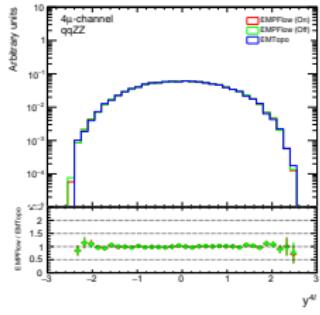
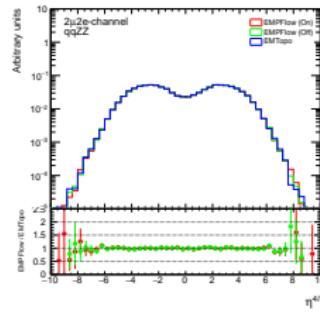
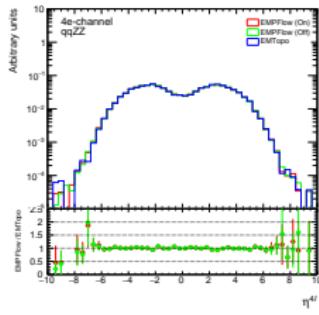
The momentum,  $\Delta R(j, H)$ , and  $\Delta\eta^{j_1 j_2}$




# Kinematic distributions for the jets

The momentum,  $\eta$ , and  $\phi$  of leading jet








# Kinematic distributions for the four leptons

The  $m_{4\ell}$ ,  $p_T^{4\ell}$  and  $\phi^{4\ell}$  of the 4-lepton system

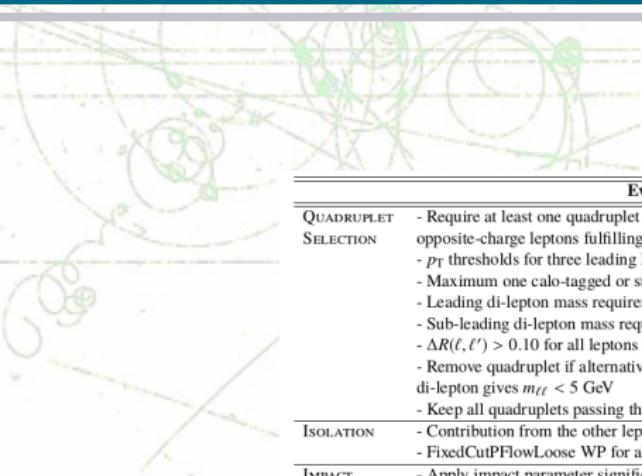


# Kinematic distributions for the four leptons

The momentum,  $\eta^{4\ell}$ , and  $y^{4\ell}$  of the 4-lepton system



# Summary


- A comparison between EMPFlow (21.2.124), EMPFlow (21.2.91) and EMTopo (21.2.91) is performed.
- Much improvement is seen from the Met distribution of  $4\mu$  and  $2\mu 2e$  channels, especially on the region between  $40 < \text{Met} < 140$  GeV.
- Also, the bug fix is a bit up on  $\text{Met} < 20$  GeV on both  $4\mu$  and  $2\mu 2e$  channels.
- The  $4e$ -channel has stayed unchanged as expected after the bug fix.
- We showed kinematic distributions for the 4-lepton, di-lepton and jets.



Thank you!



# Additional slides



## Event Selection

|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUADRUPLET<br>SELECTION             | <ul style="list-style-type: none"><li>- Require at least one quadruplet of leptons consisting of two pairs of same-flavour opposite-charge leptons fulfilling the following requirements:</li><li>- <math>p_T</math> thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV</li><li>- Maximum one calo-tagged or stand-alone muon or silicon-associated forward per quadruplet</li><li>- Leading di-lepton mass requirement: <math>50 &lt; m_{12} &lt; 106</math> GeV</li><li>- Sub-leading di-lepton mass requirement: <math>m_{\text{threshold}} &lt; m_{34} &lt; 115</math> GeV</li><li>- <math>\Delta R(\ell, \ell') &gt; 0.10</math> for all leptons in the quadruplet</li><li>- Remove quadruplet if alternative same-flavour opposite-charge di-lepton gives <math>m_{\ell\ell} &lt; 5</math> GeV</li><li>- Keep all quadruplets passing the above selection</li></ul> |
| ISOLATION                           | <ul style="list-style-type: none"><li>- Contribution from the other leptons of the quadruplet is subtracted</li><li>- FixedCutPFlowLoose WP for all leptons</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IMPACT<br>PARAMETER<br>SIGNIFICANCE | <ul style="list-style-type: none"><li>- Apply impact parameter significance cut to all leptons of the quadruplet</li><li>- For electrons: <math>d_0/\sigma_{d_0} &lt; 5</math></li><li>- For muons: <math>d_0/\sigma_{d_0} &lt; 3</math></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BEST<br>QUADRUPLET                  | <ul style="list-style-type: none"><li>- If more than one quadruplet has been selected, choose the quadruplet with highest Higgs decay ME according to channel: <math>4\mu</math>, <math>2e2\mu</math>, <math>2\mu2e</math> and <math>4e</math></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VERTEX<br>SELECTION                 | <ul style="list-style-type: none"><li>- Require a common vertex for the leptons:</li><li>- <math>\chi^2/\text{ndof} &lt; 5</math> for <math>4\mu</math> and <math>&lt; 9</math> for others decay channels</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |