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电子显微镜可以直接看到原子
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Thomson, Sir J.J.

born Dec. 18, 1856, Cheetham Hill, near Manchester, Eng. died Aug. 30, 1940, Cambridge, Cambridgeshire

in full  Sir Joseph John Thomson  English physicist who helped revolutionize the knowledge of atomic structure by his discovery of the electron (1897). He received the Nobel Prize for Physics in 1906 and was knighted in 1908. 





“浸入式”原子模型:认为原子是由带正电的均匀连续体和在其中运动的负电子构成
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Ruthorford alpha粒子散射实验
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Feynman, Richard P.

born May 11, 1918, New York, New York, U.S. died February 15, 1988, Los Angeles, California

in full  Richard Phillips Feynman  American theoretical physicist who was widely regarded as the most brilliant, influential, and iconoclastic figure in his field in the post-World War II era.

Feynman remade quantum electrodynamics—the theory of the interaction between light and matter—and thus altered the way science understands the nature of waves and particles. He was co-awarded the Nobel Prize for Physics in 1965 for this work, which tied together in an experimentally perfect package all the varied phenomena at work in light, radio, electricity, and magnetism. The other cowinners of the Nobel Prize, Julian S. Schwinger of the United States and Tomonaga Shin'ichirō of Japan, had independently created equivalent theories, but it was Feynman's that proved the most original and far-reaching. The problem-solving tools that he invented—including pictorial representations of particle interactions known as Feynman diagrams—permeated many areas of theoretical physics in the second half of the 20th century.

Born in the Far Rockaway section of New York City, Feynman was the descendant of Russian and Polish Jews who had immigrated to the United States late in the 19th century. He studied physics at the Massachusetts Institute of Technology, where his undergraduate thesis (1939) proposed an original and enduring approach to calculating forces in molecules. Feynman received his doctorate at Princeton University in 1942. At Princeton, with his adviser, John Archibald Wheeler, he developed an approach to quantum mechanics governed by the principle of least action. This approach replaced the wave-oriented electromagnetic picture developed by James Clerk Maxwell with one based entirely on particle interactions mapped in space and time. In effect, Feynman's method calculated the probabilities of all the possible paths a particle could take in going from one point to another.

During World War II Feynman was recruited to serve as a staff member of the U.S. atomic bomb project at Princeton University (1941–42) and then at the new secret laboratory at Los Alamos, New Mexico (1943–45). At Los Alamos he became the youngest group leader in the theoretical division of the Manhattan Project. With the head of that division, Hans Bethe, he devised the formula for predicting the energy yield of a nuclear explosive. Feynman also took charge of the project's primitive computing effort, using a hybrid of new calculating machines and human workers to try to process the vast amounts of numerical computation required by the project. He observed the first detonation of an atomic bomb on July 16, 1945, near Alamogordo, New Mexico, and, though his initial reaction was euphoric, he later felt anxiety about the force he and his colleagues had helped unleash on the world.



At war's end Feynman became an associate professor at Cornell University (1945–50) and returned to studying the fundamental issues of quantum electrodynamics. In the years that followed, his vision of particle interaction kept returning to the forefront of physics as scientists explored esoteric new domains at the subatomic level. In 1950 he became professor of theoretical physics at the California Institute of Technology (Caltech), where he remained the rest of his career.

Five particular achievements of Feynman stand out as crucial to the development of modern physics. First, and most important, is his work in correcting the inaccuracies of earlier formulations of quantum electrodynamics, the theory that explains the interactions between electromagnetic radiation (photons) and charged subatomic particles such as electrons and positrons (antielectrons). By 1948 Feynman completed this reconstruction of a large part of quantum mechanics and electrodynamics and resolved the meaningless results that the old quantum electrodynamic theory sometimes produced. Second, he introduced simple diagrams, now called Feynman diagrams, that are easily visualized graphic analogues of the complicated mathematical expressions needed to describe the behaviour of systems of interacting particles. This work greatly simplified some of the calculations used to observe and predict such interactions.

In the early 1950s Feynman provided a quantum-mechanical explanation for the Soviet physicist Lev D. Landau's theory of superfluidity—i.e., the strange, frictionless behaviour of liquid helium at temperatures near absolute zero. In 1958 he and the American physicist Murray Gell-Mann devised a theory that accounted for most of the phenomena associated with the weak force, which is the force at work in radioactive decay. Their theory, which turns on the asymmetrical “handedness” of particle spin, proved particularly fruitful in modern particle physics. And finally, in 1968, while working with experimenters at the Stanford Linear Accelerator on the scattering of high-energy electrons by protons, Feynman invented a theory of “partons,” or hypothetical hard particles inside the nucleus of the atom, that helped lead to the modern understanding of quarks.

Feynman's stature among physicists transcended the sum of even his sizable contributions to the field. His bold and colourful personality, unencumbered by false dignity or notions of excessive self-importance, seemed to announce: “Here is an unconventional mind.” He was a master calculator who could create a dramatic impression in a group of scientists by slashing through a difficult numerical problem. His purely intellectual reputation became a part of the scenery of modern science. Feynman diagrams, Feynman integrals, and Feynman rules joined Feynman stories in the everyday conversation of physicists. They would say of a promising young colleague, “He's no Feynman, but . . .” His fellow physicists envied his flashes of inspiration and admired him for other qualities as well: a faith in nature's simple truths, a skepticism about official wisdom, and an impatience with mediocrity.

Feynman's lectures at Caltech evolved into the books Quantum Electrodynamics (1961) and The Theory of Fundamental Processes (1961). In 1961 he began reorganizing and teaching the introductory physics course at Caltech; the result, published as The Feynman Lectures on Physics, 3 vol. (1963–65), became a classic textbook. Feynman's views on quantum mechanics, scientific method, the relations between science and religion, and the role of beauty and uncertainty in scientific knowledge are expressed in two models of science writing, again distilled from lectures: The Character of Physical Law (1965) and QED: The Strange Theory of Light and Matter (1985).
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Gell-Mann, Murray

born September 15, 1929, New York, New York, U.S. 

American physicist, winner of the Nobel Prize for Physics for 1969 for his work pertaining to the classification of subatomic particles and their interactions.

Having entered Yale University at the age of 15, Gell-Mann received his B.S. in physics in 1948 and his Ph.D. at the Massachusetts Institute of Technology in 1951. His doctoral research on subatomic particles was influential in the later work of the Nobel laureate (1963) Eugene P. Wigner. In 1952 Gell-Mann joined the Institute for Nuclear Studies at the University of Chicago. The following year he introduced the concept of “strangeness,” a quantum property that accounted for previously puzzling decay patterns of certain mesons. As defined by Gell-Mann, strangeness is conserved when any subatomic particle interacts via the strong force—i.e., the force that binds the components of the atomic nucleus.

In 1961 Gell-Mann and Yuval Ne'eman, an Israeli theoretical physicist, independently proposed a scheme for classifying previously discovered strongly interacting particles into a simple, orderly arrangement of families. Called the Eightfold Way (after Buddha's Eightfold Path to Enlightenment and bliss), the scheme grouped mesons and baryons (e.g., protons and neutrons) into multiplets of 1, 8, 10, or 27 members on the basis of various properties. All particles in the same multiplet are to be thought of as variant states of the same basic particle. Gell-Mann speculated that it should be possible to explain certain properties of known particles in terms of even more fundamental particles, or building blocks. He later called these basic bits of matter “quarks,” adopting the fanciful term from James Joyce's novel Finnegans Wake. One of the early successes of Gell-Mann's quark hypothesis was the prediction and subsequent discovery of the omega-minus particle (1964). Over the years, research has yielded other findings that have led to the wide acceptance and elaboration of the quark concept.

Gell-Mann joined the faculty of the California Institute of Technology, Pasadena, in 1955 and was appointed Millikan professor of theoretical physics in 1967 (emeritus, 1993). He published a number of works, notable among which are The Eightfold Way (1964), written in collaboration with Ne'eman; Broken Scale Variance and the Light Cone (1971), coauthored with K. Wilson; and The Quark and the Jaguar (1994).
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Perrin, Jean

born Sept. 30, 1870, Lille, France died April 17, 1942, New York, N.Y., U.S.

in full  Jean-Baptiste Perrin French physicist who, in his studies of the Brownian motion of minute particles suspended in liquids, verified Albert Einstein's explanation of this phenomenon and thereby confirmed the atomic nature of matter. For this achievement he was honoured with the Nobel Prize for Physics in 1926.

Educated at the École Normale Supérieure, Paris, Perrin joined the faculty of the University of Paris (1898) where he became professor of physical chemistry (1910–40). In 1895 he established that cathode rays are negatively charged particles (electrons). His attempt to determine the mass of these particles was soon anticipated by the work of J.J. Thomson.

About 1908 Perrin began to study Brownian motion, the erratic movement of particles suspended in a liquid. Einstein's mathematical analysis (1905) of this phenomenon suggested that the particles were being jostled by the randomly moving water molecules around them. Using the newly developed ultramicroscope, Perrin carefully observed the manner of sedimentation of these particles and provided experimental confirmation of Einstein's equations. His observations also enabled him to estimate the size of water molecules and atoms as well as their quantity in a given value. This was the first time the size of atoms and molecules could be reliably calculated from actual visual observations. Perrin's work helped raise atoms from the status of useful hypothetical objects to observable entities whose reality could no longer be denied.
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1911年布魯塞爾舉行的Solvay會議
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Brownian motion





英国植物学家布朗(R. Brown)在显微镜下观察到悬浮在静止液体里的花粉不停地做无规则运动。
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Steven Chu 朱棣文

Chu served as the 12th United States Secretary of Energy from 2009 to 2013. At the time of his appointment as Energy Secretary, Chu was a professor of physics and molecular and cellular biology at the University of California, Berkeley, and the director of the Lawrence Berkeley National Laboratory, where his research was concerned primarily with the study of biological systems at the single molecule level.On February 1, 2013, he announced he would not serve for the President‘s second term and resigned on April 22, 2013. Chu is a vocal advocate for more research into renewable energy and nuclear power, arguing that a shift away from fossil fuels is essential to combating climate change. For example, he has conceived of a global "glucose economy", a form of a low-carbon economy, in which glucose from tropical plants is shipped around like oil is today.

Steven Chu (Chinese: 朱棣文; pinyin: Zhū Dìwén, born February 28, 1948) is an American physicist who is known for his research at Bell Labs and Stanford University in cooling and trapping of atoms with laser light, which won him the Nobel Prize in Physics in 1997, along with his scientific colleagues Claude Cohen-Tannoudji and William Daniel Phillips.
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演示者
演示文稿备注
范氏气体方程中压强的修正为什么和粒子数密度平方成正比
讲光子气体的特例，其中速度为光速c，动量为E/c
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演示者
演示文稿备注
密度分布和概率分布的关系
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Maxwell, James Clerk

born June 13, 1831, Edinburgh, Scotland died November 5, 1879, Cambridge, Cambridgeshire, England

Scottish physicist best known for his formulation of electromagnetic theory. He is regarded by most modern physicists as the scientist of the 19th century who had the greatest influence on 20th-century physics, and he is ranked with Sir Isaac Newton and Albert Einstein for the fundamental nature of his contributions. In 1931, on the 100th anniversary of Maxwell's birth, Einstein described the change in the conception of reality in physics that resulted from Maxwell's work as “the most profound and the most fruitful that physics has experienced since the time of Newton.”

The concept of electromagnetic radiation originated with Maxwell, and his field equations, based on Michael Faraday's observations of the electric and magnetic lines of force, paved the way for Einstein's special theory of relativity, which established the equivalence of mass and energy. Maxwell's ideas also ushered in the other major innovation of 20th-century physics, the quantum theory. His description of electromagnetic radiation led to the development (according to classical theory) of the ultimately unsatisfactory law of heat radiation, which prompted Max Planck's formulation of the quantum hypothesis—i.e., the theory that radiant-heat energy is emitted only in finite amounts, or quanta. The interaction between electromagnetic radiation and matter, integral to Planck's hypothesis, in turn has played a central role in the development of the theory of the structure of atoms and molecules.
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Boltzmann, Ludwig Eduard

born Feb. 20, 1844, Vienna, Austria died Sept. 5, 1906, Duino, Italy

physicist whose greatest achievement was in the development of statistical mechanics, which explains and predicts how the properties of atoms (such as mass, charge, and structure) determine the visible properties of matter (such as viscosity, thermal conductivity, and diffusion).

After receiving his doctorate from the University of Vienna in 1866, Boltzmann held professorships in mathematics and physics at Vienna, Graz, Munich, and Leipzig.

In the 1870s Boltzmann published a series of papers in which he showed that the second law of thermodynamics, which concerns energy exchange, could be explained by applying the laws of mechanics and the theory of probability to the motions of the atoms. In so doing, he made clear that the second law is essentially statistical and that a system approaches a state of thermodynamic equilibrium (uniform energy distribution throughout) because equilibrium is overwhelmingly the most probable state of a material system. During these investigations Boltzmann worked out the general law for the distribution of energy among the various parts of a system at a specific temperature and derived the theorem of equipartition of energy (Maxwell-Boltzmann distribution law). This law states that the average amount of energy involved in each different direction of motion of an atom is the same. He derived an equation for the change of the distribution of energy among atoms due to atomic collisions and laid the foundations of statistical mechanics.

Boltzmann was also one of the first continental scientists to recognize the importance of the electromagnetic theory proposed by James Clerk Maxwell of England. Though his work on statistical mechanics was strongly attacked and long-misunderstood, his conclusions were finally supported by the discoveries in atomic physics that began shortly before 1900 and by recognition that fluctuation phenomena, such as Brownian motion (random movement of microscopic particles suspended in a fluid), could be explained only by statistical mechanics.
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算一个分子平均平动能为1eV时对应的温度为104K
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演示者
演示文稿备注
实际上狭缝出来的分子速率分布已经改变，是泻流以后的分布

http://www.phyedu.pku.edu.cn/PhysicsTeachingSources/CAIChenXiMouCollegePhysics/cais/02.Thermodynamics/03.TheMaxwellDistributionisAMostProbableDistribution/show00.htm
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演示者
演示文稿备注
最概然速率表征的是分子速率分布的情况，也可以表示分子由于热运动而扩散的本领，逃逸速度则反映了地球与分子之间的束缚能力，两者相互竞争决定了有无气体。而气体百分比的多少则决定于地球的形成以及生物圈的演化

http://discovery.cctv.com/special/C19607/08/01/index.shtml
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演示者
演示文稿备注
对速度分布规律是否满意？最概然速率为什么不是零？一维（演示多刚球碰撞）？二维？其他物理量的分布如何？
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