

Status of the TaichuPix chip for the highrate CEPC Vertex Detector

Wei Wei On behalf of the CEPC MOST2 Vertex detector design team

2020-08-21

CEPC Midterm 20200821

Outline

- TaichuPix1 chip design
- TaichuPix1 test status
- TaichuPix2 chip design
- Sensor TCAD simulation for TID

Challenges and R&D activities on pixel sensors

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: 25μm×25μm
- Hit rate: 120MHz/chip @W

- Two major constraints for the CMOS sensor
 - Pixel size: < 25μm* 25μm (σ~5μm)
 > aiming for 16μm*16μm (σ~3μm)
 - Readout speed: bunch crossing @ 40MHz
- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector
- TID is also a constraint, 1~2.5Mrad/year is achievable

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	v	Х	v
Readout Speed	Х	 	Х
TID	X (?)	✓	✓

Main specs of the full size chip for high rate vertex detector

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$

For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pixel array	512row×1024col
TID	>1Mrad	Date rate	3.84Gbps triggerless ~110Mbps trigger	Power Density	< 200mW/cm ² (air cooling)
		Dead time	<500ns for 98% efficiency	Chip size	~1.4cm×2.56cm

From the CDR of CEPC

New proposed architecture by TaichuPix

From Tianya Wu in User Manual

- Similar to the ATLAS ITK readout architecture: "columndrain" readout
 - Priority based data driven readout
 - Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
 - Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate

2-level FIFO architecture

- L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface
- Trigger readout
 - Make the data rate in a reasonable range
 - Data coincidence by time stamp, only matched event will be readout 5

Sensing diode

Design of Sensor

- Goal: high Q/C (collected charge/sensor capacitance)
 - Small collection electrode → low C >
 - High charge collection efficiency \rightarrow high Q >
- Process options:
 - High resistivity sensitive layer (> 1 k Ω cm)
 - Deep p-well shielding n-well to allow full CMOS

Design key points

W. Snoeys et al. DOI 10.1016/j.nima.2017.07.046

Footprint

Diameter

- Diode geometry optimization, benefit from previous design (JadePix1)
 - 2-3 µm small electrode & large footprint
- Reverse bias (~ 6V) → reduce C & increase depletion volume

N Well Diameter

Spacing

Pixel analog

- Pixel analog is derived from ALPIDE (and benefit from MIC4 for MOST1)
 - As most of ATLAS-MAPS sensors' scheme
- Biasing current has to be increased, for a peaking time of ~25ns
 - Now in MOST1 ~2us peaking time was designed, too slow for 40MHz BX
- Consequence:
 - Power dissipation increased
 - Modified TJ process for ATLAS has to be used
 - > With faster charge collection time, otherwise only fast electronics is of no meaning

- Two parallel digital readout architectures were designed:
 - Scheme 1: ALPIDE-like: benefit from the proved digital readout in small pixel size
 - Scheme 2: FE-I3-like: benefit from the proved fast readout @40MHz BX (ATLAS)

Design effort aiming for 40MHz BX on digital

- ALPIDE-like scheme:
 - Fast-Or bus added to record the column hit time stamp
 - Boosting speed of the AERD (Address-Encoder & Reset-Decoder)
 - > To shift the Fast-Or by a half of the clock cycle

- FE-I3-like scheme:
 - Simplify the pixel cell logic
 - All the logic gates were re-designed with fully customized layout
 - > For smaller pixel size

Pixel layout

Layout

- Pixel size: 25 μm × 25 μm
 - Sensor + Front-end occupy 45% pixel area
 - Smaller area possible
 - > Shield from digital part to minimize crosstalk
 - > Pixels are aside to separate analog and digital part
 - > Two adjacent pixel analog share biasing signal routing

Full chip periphery logic design

- Main Functionality:
 - Trigger/Triggerless readout mode compatible
 - Data coincidence and trigger window logic
 - Two level FIFOs for hit derandomization
 - High speed serialization for data readout
 - > 4Gbps data rate capability

From X.M. Wei for the CEPC Vertex MOST2 group meeting

- Other necessary blocks
 - Slow control of the pixel array and full chip via SPI interface
 - Bias generation by current- and voltage- DACs
 - Clock management: Phase Lock Loop and serializer
 - Power management: LDOs for on-chip low ripple power supply
 - High speed interface: CML & LVDS Drivers

Chip Status of TaichuPix1

Chip size: $5mm \times 5mm$ Pixel size: $25\mu m \times 25\mu m$

- First MPW tapeout was submitted in June,2019
 - Thanks IFAE for their tunnel for submission to TJ
- Chip received in Nov. 2019
 - With 60 chips, 40 chips delivered to China
- One block area of 5mm×5mm was fully occupied
 - A full functional pixel array (small scale)
 - > 85% of the block area
 - A 64×192 Pixel array + Periphery + PLL + Serializer
 - > Bias generation included
 - I/O arranged in one edge, as the final chip
 - other independent test blocks (less critical)
 - > LDO + PLL

Outline

- TaichuPix1 chip design
- TaichuPix1 test status
- TaichuPix2 chip design
- Sensor TCAD simulation for TID

Test setup for chip evaluation

- Test setup based on KC705 Xilinx FPGA Eva board
- General data stream
 - Downstream from PC to chip: TCPIP@MATLAB → SPI package@ FPGA → TaichuPix Periphery
 - Upstream from chip to PC: TaichuPix
 Serializer → FIFO@FPGA →
 TCPIP@MATLAB
- Test Firmware developed in IHEP (China side) by Jun HU and Wei WEI
 - Released version delivered to different collaborators, and functional worked

Test Status of TaichuPix1

- Initiated in November, in parallel with Tcpx2 design
- Due to the limited time and some detected bugs, most tests were functional test before Tcpx2's submission
- Blocks test completed
 - Pixel Analog
 - Pixel Digital
 - Periphery Logic
 - Periphery Blocks
 - ► DAC
 - PLL & Serializer
 - > LDO
- Test status summary
 - Major functionality proved
 - Weak substrate connection was found in the IO ring, tested by forcely power supply
 - Some bugs found & the problematic was located
 - Current performance test results meet with the requirement

Pixel analog performance test

- Pixel analog was tested by the probed output
- The tested performance was at the same level as in simulation, though the test condition is not perfect
- Tested noise 5.7e-
- Tested time walk 36ns(@300 e⁻ 1.5 ke⁻)

Pixel digital functionality

- Pixel digital's functionality was partially proved, some bugs were found
- Tested by the self-debug mode supported by the periphery logic
- The row addresses can be traversed, however, the column addresses was found unable to be correctly reset
- Bugs located in layout, modified in Tcpx2
- Periphery block ran reliably during the functional test

PLL and Serializer

- PLL and the serializer was thoroughly tested and proved
- PLL's tuning range 0.32~2.91GHz agrees with the simulation
- Good and robust eye-diagram observed at 2.24GHz, with the total jitter < 150ps (@ error rate < e⁻¹²)
- Serializer could run steadily @ 2.24GHz, meaning we will need two high speed ports for the triggerless (power, material budget, routing space)

Outline

- TaichuPix1 chip design
- TaichuPix1 test status
- TaichuPix2 chip design
- Sensor TCAD simulation for TID

Status of TaichuPix2

- Submitted on Feb 18, 5*5mm
 - Die received on July 23nd
 - Chips were under wire bonding
- All blocks fully integrated, as the final chip
- New features
 - A 64*192 pixel array with the same dimension as Tcpx1
 - 32 + 32 double column modified FE-I3 readout, 32 dblcol modified ALPIDE readout
 - 6 variations of pixel analog, each for 16 columns
 - Newly integrated blocks: Two LDOs for power supplies
 - 8b10b encoder added for Triggerless output and balanced datastream
 - X-chip buses added for multiple chip interconnections

Status of TaichuPix2

- Major bugs (were tried to be) fixed
 - New IO rings were used, without DNW soft connect issues
 - DAC stability improved with higher phase margin
- Pixel readout optimized
 - To make larger headroom for the timing
 - Data latching @ 1clk -> 1.5clk
 - Address encoder pull-up added to avoid high-Z state
- Pixel analog new attempts
 - Smaller pixel area
 - Possible to be 24um*25um
 - One branch with enclosed gate for better TID
- X-chip interconnections attempts
 - SPI buses, PLL clock reference, reset signal, are possible to be propagated by chip-chip wire bonding
 - Save some routing space for the flex cable design

Preliminary test status of Tcpx2

- Functional verification status
 - IO rings works fine (problem solved)
 - Bandgap reference output proved (oscillation cancelled)
 - Periphery blocks tested
 - PLL lock function preliminarily proved
 - Pixel array digital communication with the periphery preliminarily proved
- More to be tested and understood
 - Pixel analog
 - Full data chain from pixel analog to PLL output
 - LDO for the power management

Outline

- TaichuPix1 chip design
- TaichuPix1 test status
- TaichuPix2 chip design
- Sensor TCAD simulation for TID

Sensor TCAD simulation for TID evaluation

4 5000

- Sensing diode was simulated by TCAD to study its TID behavior
- The impact is negligible for the charge collection, and the leakage current after 1Mrad radiation
- However, we should give attention to the increasing capacitance

Summary and Recent Schedule

- Test of the Tcpx1 chip almost finished
 - All/most bugs were located/understood
 - Major functionality proved
 - (Testable) performance test agreed with the simulation
 - > The test condition was not perfect, due to the IO ring issue and bias issues
 - Try to see if TID test is possible with Tcpx1
- Tcpx2 will soon be tested after wire-bonded
 - Functional debugging:~3weeks
 - Performance test
 - TID test
- Thinking about the following Tcpx3 MPW...
 - It is better to collect all the test results and bugs of Tcpx1 &2 before Tcpx3 submission
 - Expected to tapeout in the Spring of 2021
 - We have the chance to cancel Tcpx3 MPW, if Tcpx2's test showed good results

Future plan

A	B	С	D	1	E	F	G	Н	1	J	К	L	M	N	0	Р	Q	R
	2020						2021											
	8	9		10	11	12	1	2	3	4	L E	5 6	7	8	9	10	11	12
Tcpx2 test																		
Tcpx2 TID test																		
Tcpx3 chip design																		
Tcpx3 tapeout																		
Tcpx3 chip test																		
Design for the Engineering run																		
Design refine for the Engineering run																		
Engineering run bidding & payment																		
Engineering tapeout																		
ATE test setup design																		
ATE die screening																		

- Key milestones:
 - Tcpx3 chip tapeout @2021.3
 - Tcpx Engineering run submission @2021.8
 - Tcpx ATE screening @ 2021.12
 - chip design accomplish

Team organization

- Design team:
 - IHEP, SDU, NWPU, IFAE & CCNU
 - Biweekly/weekly video design meeting on chip design (convened by IHEP)

Institutes	Tasks	Designers
IHEP	Full chip modeling & simulation Pixel Analog, TCAD simulation High speed interface: PLL + Serializer	Wei Wei, Ying Zhang Xiaoting Li, Weiguo Lu, Mei Zhao
CCNU/IFAE	Pixel Digital	Tianya Wu, Raimon Casanova
NWPU	Periphery Logic, LDO	Xiaomin Wei, Jia Wang
SDU	Bias generation	Liang Zhang, Long Li

- Chip characterization
 - Test system development: SDU (Jianing Dong), IHEP & IFAE
 - Electrical test: all designers supposed to be involved in the related module + other interested parties
 - Irradiation test: X-ray irradiator + beam line

Thank you!

外围电路逻辑

Readout architecture

列电路:

- 列端记录timestamp
- Trigger模式,在FIFO1 输出时丢弃不匹配数据 ,FIFO2只存储时间戳 匹配的数据

列并行读出方式:

- 512个双列并行读出以 满足dead time 的要求 ,每列对应一个FIFO1
- 512分为4个128双列, 每128对应一个FIFO2
- 128分为4个32双列,
 32双列内部采用数据
 驱动(分两级,8个一组),32双列之间轮
 询读出。轮询策略是每
 块读一个数就转读下一
 个块以避免数据拥塞。

外围电路逻辑

Interface & function

3个主要数据接口:像素阵列、SPI访问控制寄存器、数据输出至LVDS 3个功能设计:Trigger数据匹配、地址压缩、像素掩码

外围电路模块——高速数据接口

外围电路模块——高速数据接口

偏置产生模块——多通道DAC

IN

Current Generation

 $2^{0} \times$

B[0]

 $2^{1} \times$

B[1]

Characteristics

- ✤ Voltage DAC (VDAC)
 - 10 bit
 - LSB: 1.56 mV
 - Range: 0 1.6 V
- ✤ Current DAC (CDAC)
 - 8 bit
 - LSB: 40 nA
 - Range: 0 nA ~ 10.2 μA

Current DAC

- S Current mirror
- Segmented architecture
 - 4 most significant bits (MSB)
 - ★ thermometer decode
 - 4 least significant bits (LSB)
 - ★ binary weighted
- Solution Output impedance
 - Min: 104KΩ
 - Max: 43 MΩ

- 🗞 Current bias generation block
 - VBG: output of bandgap ~ 0.8 V

O IOUT

I_{unit} ~ 20 μA

27×

B[7]

Iunit

ENB

26×

BIO

25×

B[5]

 $2^4 \times$

B[4]

 $2^3 \times$

B[3]

 $2^2 \times$

B[2]

Architecture of CDAC

- Negative feedback to stabilize VBG @ 0.8 V
- 🗞 Current mirror with resistor load
- Segmented architecture
 - 4 most significant bits (MSB): thermometer decode
 - 6 least significant bits (LSB): binary weighted

