

Yukun Shi USTC

- Background
- Prototype optimization
 - Prototype transverse size
 - Absorber thickness
 - Sampling layers
 - Scintillator thickness
 - Prototype design and performance
- CEPC AHCAL optimization
 - Absorber thickness
 - Sampling layers
 - Scintillator thickness
 - Cell size
- Summary and outlook

Background

• CEPC

- The CEPC is designed as the Higgs factory
- The baseline detector option for the CEPC is guided by the particle flow algorithm(PFA)

- Physics requirement for calorimeter
 - Prototype
 - Linearity: ±3%
 - Resolution: $\frac{60\%}{\sqrt{E(GeV)}} \oplus 3\%$
 - CEPC AHCAL
 - Boson Mass Resolution :4%

CEPC baseline calorimeter options

4

- Simulation Setup
 - CEPC Simplified Geometry
 - Prototype Transverse size: 72×72 cm²
 - 40 layers: each layer has 20mm steel,3mm scintillator and 2mm PCB
 - Incident particle: Klong with energy from 10GeV to 80GeV

- Analysis
 - Fit by double side crystal ball function
 - Energy resolution as a function of incident particle's energy is described by $\frac{a}{\sqrt{F}} \oplus b$

- Prototype size optimization
 - 40 sampling layer, each layer has 20mm steel, 3mm scintillator and 2mm PCB
 - The transverse prototype size ranges from 240mm to 960mm
 - All have a linearity < $\pm 3\%$

- Prototype size optimization
 - Larger prototype size has less energy leakage and better resolution
 - Prototype size has a strong impact on the cost and power consumption of the prototype
 - 720mm is chosen to be the prototype transverse size

resolution for different Prototype size

- Absorber thickness optimization
 - Prototype Transverse size: 72×72 cm²
 - 40 sampling layer, each layer has 3mm scintillator and 2mm PCB
 - Absorber thickness for each layer ranges from 15mm to 25mm
 - Total absorber thickness ranges from 3.8 λ to 6.3 λ
 - All have a linearity $< \pm 3\%$

- Absorber thickness optimization
 - Thinner absorber has a better sampling ratio resulting a smaller statistical term
 - Thinner absorber has larger leakage resulting a bigger constant term
 - The 20mm absorber can satisfy our need

- Sampling Layer optimization
 - Prototype Transverse size: $72 \times 72 \text{ cm}^2$
 - Total absorber thickness is fixed as 800mm and total scintillator thickness is fixed as 120mm
 - The thickness of PCB for each layer is 2mm
 - The number of sampling layers ranges from 20 to 60

- Sampling Layer optimization
 - More sampling layers have less statistical fluctuation
 - Since PCB thickness for each layer is fixed, it could be a problem for more sampling layers in the prototype
 - 40 layers is reasonable for the prototype

- Scintillator thickness optimization
 - Prototype Transverse size: $72 \times 72 \text{cm}^2$
 - 40 sampling layer, each layer has 20mm steel and 2mm PCB
 - The scintillator thickness for each layer ranges from 2mm to 5mm
 - All have a linearity $< \pm 3\%$

- Scintillator thickness optimization
 - Thicker scintillator has better resolution but the improvement isn't obvious
 - Thicker scintillator will increase total thickness and manufacture cost
 - 3mm scintillator is chosen for the prototype

- Prototype design and performance

- Transverse size: $72 \times 72 \text{cm}^2$
- 40 layers: each layer has 20mm steel,3mm scintillator and 2mm PCB
- Linearity: $< \pm 3\%$
- Resolution: $< \frac{60\%}{\sqrt{E(GeV)}} \oplus 3\%$

- CEPC software environment
 - CEPC V4 geometry
 - Tracker and magnet field
 - ECAL and HCAL
 - Muon detector
 - PFA reconstruction
 - Detect particles with optimal detector
 - Higgs boson mass could be reconstructed with the recoil mass method
 - Physics benchmarks
 - vvH gg
 - Zuds: $e^+e^- q\bar{q}(q = uds)$ via Z

- Absorber thickness optimization
 - Klong with energy from 10 to 100GeV
 - Absorber thickness ranges from 10mm to 25mm
 - KL energy is reconstructed from ECAL and HCAL energy

- Absorber thickness optimization
 - Use crystal ball function as fitting function
 - The linearities are all within $\pm 3\%$ for different absorber thickness

- Absorber thickness optimization
 - ECAL introduce more material comparing to Simplified geometry
 - The 10mm absorber has a worse resolution than others
 - The rms/mean reflects the leakage for different absorber

KL resolution at different absorber thickness

- Absorber thickness optimization
 - The $m_{visible}$ is reconstructed for each Zuds event
 - The resolution of $m_{visible}$ as a function of absorber thickness shows that 20mm is a turning point

- Absorber thickness optimization
 - The jets in vvH gg events have lower energy comparing to the jets in Zuds events
 - The Higgs mass is reconstructed as $m_{visible}$ in vvH gg events
 - The boson mass resolution(BMR) as a function of absorber thickness shows 15mm is the turning point

- Sampling Layer optimization
 - Total absorber thickness is fixed as 800mm and total scintillator thickness is fixed as 120mm
 - The thickness of PCB for each layer is 2mm
 - The number of sampling layers ranges from 20 to 50

KL reconstructed energy at different sampling layers

- Sampling layer optimization
 - The linearities are almost the same for different sampling layers
 - The linearities are all within $\pm 2\%$ for different sampling layers

- Sampling layer optimization
 - More sampling layers have better energy resolution

- Sampling layer optimization
 - vvH gg events are reconstructed for different sampling layers
 - 30 sampling layers can satisfy the 4% BMR requirement but prototype needs 40 sampling layers to fulfill the design target

Merge layer optimization

- The number of sampling layers is fixed as 40
- Combine the hits from adjacent layers to change the longitudinal segmentation without affecting the energy resolution

- Scintillator thickness optimization
 - 40 layers: each layer has 20mm Steel and 2mm PCB
 - Scintillator thickness for each layer ranges from 2 to 5mm

- Scintillator thickness optimization
 - The linearities are almost the same for different scintillator thickness
 - The linearities are all within $\pm 3\%$ for different scintillator thickness

- Scintillator thickness optimization
 - Different scintillator thickness doesn't have much difference on resolution

KL resolution at different scintillator thickness

- Scintillator thickness optimization
 - vvH gg events are reconstructed for different scintillator thickness
 - The difference of BMR is within 0.1%
 - The 3mm scintillator is a reasonable choice

vvH - gg events for different scintillator thickness

Cell size optimization

- Cell size is the key parameter for PFA oriented HCAL
- Cell size has a strong impact on both detector performance and cost
- Careful optimization has been done to reconstruction parameter

Cell size optimization

- The relation between cell size and BMR has been studied
- Similar study has been done to CEPC DHCAL as comparison
- 40mm is the final choice for AHCAL prototype

Summary and outlook

Summary

- The final design for the AHCAL prototype
 - Prototype Transverse size: $72 \times 72 \text{cm}^2$
 - 40 sampling layers
 - Each layer: 20mm absorber, 3mm scintillator and 2mm PCB
 - Cell size: 40mm
- The performance for the AHCAL prototype
 - Linearity: $\pm 1.5\%$
 - Resolution: $\frac{48\%}{\sqrt{E(GeV)}} \oplus 3\%$
- Outlook
 - The prototype will be constructed and tested to verify the design before the end of 2023
 - Software work will be going on to improve the detector performance

Back up

• Dynamic Range

- the SiPM saturation effect could be corrected
- The dynamic Range wouldn't be a problem

SiPM Simulation

- NDL 15um SiPM is simulated
- Cross talk has limited influence on SIPM performance

Linearity and resolution w/wo crosstalk

HCAL prototype

- Threshold for cells
 - 20mm absorber geometry with different threshold for cells
 - It's a nonnegligible parameter in terms of resolution
 - It has a strong correlation with scintillator and SiPM
 - 0.5MIP threshold is applied in the following simulation

HCAL prototype

- Threshold for cells
 - This parameter is a bridge between software and hardware
 - 0.5MIP isn't a perfect value but it's acceptable for present hardware and software settings

HCAL prototype

- Comparison with different absorber thickness
 - With leakage cut
 - So what should be the principle for leakage cut

- $m_{visible}$ reconstructed by the $q\bar{q}$ jets
- Crystal ball function is used for fitting

- Resolution for *m*_{visible}
 - Resolution1: fit sigma/peak
 - Resolution2: histogram rms/peak

Parameter optimization

ee- $q\bar{q}$ events

- $m_{visible}$ reconstructed by the $q\bar{q}$ jets
- Crystal ball function is used for fitting

- Resolution for *m*_{visible}
 - Resolution1: fit sigma/peak
 - Resolution2: histogram rms/peak

Parameter optimization

ee- $q\bar{q}$ events

Plan for simulation

- Absorber thickness-linearity
 - KL
 - ee- $q\bar{q}$
- Sampling Layer-hadron resolution
 - KL
 - nnH-gg
 - Readout layer for nnH-gg-PFA separation power
- Sensor thickness-hadron resolution
 - KL
 - nnH-gg
- Sensor size-PFA separation power
 - nnH-gg
 - Different kinds of readout mode