Design of CEPC LTS detector magnet

Ling Zhao On behalf of the Superconducting Magnet Group 2020.8.28

Outline

BASELINE design of detector magnet

- Progress of R&D
- New requirement for the detector magnet
- Challenges from new requirements

History of High Energy Physics Detector Main parameters of detector magnets

- 1969 CERN BEBC, Big European Bubble Chamber (solenoid)
- 1972 CERN Omegamagnet (large aperture dipole)
- 1977 CERN/ISR –Solenoid
- 1978 DESY CELLO (solenoid)
- 1983 SLAC/PEP4 TPC solenoid
- 1985 KEK/TRISTAN –TOPAZ, VENUS (solenoids)
- 1988 CERN/LEP ALEPH, DELPHI (solenoids)
- 1990 DESY/HERA –ZEUS (solenoid)
- 1997 SLAC –BABAR (solenoid)
- 2004 KEK –BESS-Polar (ultra-thin solenoid)
- 2007 CERN/LHC –CMS (solenoid), ATLAS (Toroids, solenoid)

.M. Taylor, CERN Summer Student Lecture, 2006

Experiment	Laboratory	В	Radius	Length	Energy	X/X_0	E/M
-	-	[T]	[m]	[m]	[MJ]	, -	[kJ/kg]
TOPAZ*	KEK	1.2	1.45	5.4	20	0.70	4.3
CDF^*	Tsukuba/Fermi	1.5	1.5	5.07	30	0.84	5.4
VENUS*	KEK	0.75	1.75	5.64	12	0.52	2.8
AMY*	KEK	3	1.29	3	40	†	
CLEO-II*	Cornell	1.5	1.55	3.8	25	2.5	3.7
ALEPH*	Saclay/CERN	1.5	2.75	7.0	130	2.0	5.5
DELPHI*	RAL/CERN	1.2	2.8	7.4	109	1.7	4.2
ZEUS*	INFN/DESY	1.8	1.5	2.85	11	0.9	5.5
$H1^*$	RAL/DESY	1.2	2.8	5.75	120	1.8	4.8
BaBar*	INFN/SLAC	1.5	1.5	3.46	27	†	3.6
$D0^*$	Fermi	2.0	0.6	2.73	5.6	0.9	3.7
BELLE*	KEK	1.5	1.8	4	42	†	5.3
BES-III	IHEP	1.0	1.475	3.5	9.5	†	2.6
ATLAS-CS	ATLAS/CERN	2.0	1.25	5.3	38	0.66	7.0
ATLAS-BT	ATLAS/CERN	1	4.7 - 9.75	5 26	1080	(Toroid)	t
ATLAS-ET	ATLAS/CERN	1	0.825 - 5.35	5 5	2×250	(Toroid)	†
CMS	CMS/CERN	4	6	12.5	2600	+	12
SiD**	ILC	5	2.9	5.6	1560	†	12
ILD**	ILC	4	3.8	7.5	2300	†	13
SiD**	CLIC	5	2.8	6.2	2300	†	14
ILD**	CLIC	4	3.8	7.9	2300	†	
FCC**		6	6	23	54000	†	12

* No longer in service

**Conceptual design in future

[†] EM calorimeter is inside solenoid, so small X/X_0 is not a goal

Revised August 2017 by Y. Makida (KEK)

Design of LTS DETECTOR MAGNET in CDR

Solenoid central field : 3T Working current: 15779A Coil inner radius: 3600mm Cable length: 30.1km

Pure aluminum stabilizer Aluminum alloy reinforcement

• New Yoke Design of LTS DETECTOR MAGNET

Field Distribution with new yoke design

Distribution curve of magnetic field on central axis

Valve box and chimney design in CDR

Two Valve box

One bigger Valve box

Cable development

- Al Stabilized Rutherford cable development
 - Short sample (10000 A, 100 m) meets the requirements.
 - ► The secondary coextrusion process of aluminium alloy is under development by the support of IHEP.
 - The RRR value test device and critical current test device have been completed in IHEP.

Coil winding process

Coil winding process

- Cooperation has been established with KEYE.
- The design of winding tooling is about to be completed.

BES III

Inner winding

CMS

coil cooling design

Exhaust pipe		Internal section size(mm)	Wall thickness(mm)	Length mm)
The phase	Cooltube	Ф8	1	400
separetor	Feed pipe	Ф12	2	600
Steam tank	Exhaust pipe	Ф12	2	140
Coil skeleton	The phase separator	Ф100	the upper plate 6, the bottom palte 10, cylinder 6	106
Feed pipe	Steam tank、 Sump	50 × 20	2	203
Sump	The experiment temperature hele exploration, the	nt involves ium at first whole ther	filling the tube with the room According to preliminary mosiphon circut performs bet a separator is around 50% The	tter when

Schematic diagram of thermosiphon pipeline

say ,the requirement of the liquid helium is around 0.35L.

New requirement

11

- The detector magnet will be located between the Hadron calorimeter and Electromagnetic calorimeter;
- Reduce mass : Increase coil current density, and superconductor were reduced from four layers to two or three layers.
- Reduce the radial space occupied by magnet.

	CMS	BESIII	IDEA*	BESS-POLAR	CDR(CEPC)	NEW DESIGN
Central field (T)	4	1	2	0.8	3	3
Operating current (A)	19600	3369	20000	380	16796	16956
Inner diameter of coil (mm)	6360	2960	2200	900	7200	4600
Length of coil (mm)	12480	3520	6000	1400	7606	6000
Outer shell external diameter(mm)	7600	3292	4600	1060	8700	5600
Inner shell inside diameter(mm)	5940	2750	4000	800	6800	4200

New design of solenoid

Coil with two layers superconductor : weight of superconductor is 11.4t.

coil	Rin(m)	Rout(m)	Layer	Zin(m)	Zout(m)	Turn	Length(m)	I (A)	J (A/mm2)	Bmax	hoopstress (Mpa)
1	2.3	2.36	2	-2.5	-2.14	36	1054.07	16956	56. 52	3.73	484.89
2	2.3	2.36	2	-2.09	-0.73	136	3982.03	16956	56.52	3.73	484.89
3	2.3	2.36	2	-0.68	0.68	136	3982.03	16956	56.52	3.73	484.89
4	2.3	2.36	2	0.73	2.09	136	3982.03	16956	56.52	3.73	484.89
5	2.3	2.36	2	2.14	2.5	36	1054.07	16956	56.52	3. 73	484.89

Coil with three layers superconductor: weight of superconductor is 17.2t.

coil	Rin(m)	Rout(m)	Layer	Zin(m)	Zout(m)	Turn	Length(m)	I (A)	J (A/mm2)	Bmax	hoopstress (Mpa)
1	2.3	2.39	3	-2.5	-2.14	36	1591.28	11338	33. 7933	3.495	271.65
2	2.3	2.39	3	-2.09	-0.73	136	6011.50	11338	33. 7933	3.495	271.65
3	2.3	2.39	3	-0.68	0.68	136	6011.50	11338	33. 7933	3.495	271.65
4	2.3	2.39	3	0.73	2.09	136	6011.50	11338	33. 7933	3.495	271.65
5	2.3	2. 39	3	2. 14	2.5	36	1591.28	11338	33. 7933	3. 495	271.65

12

Field design based on the new requirement

- Central field: 3.0T;
- Max field on coil: 3.73T/3.495T;
- Stored energy : 0.3959GJ/0.40024GJ ; Energy-over-mass ratio:34kJ/kg/23kJ/kg;
- Working current: 16956A/11338A; Two layers coil three layers coil

Field Distribution

Challenges from new requirements

High hoopstress on the superconductor because of the higher current density.

 \longrightarrow new structure of the superconductor which can bear the hoopstress.

Reduce mass of the magnet

→ thin coil, Vacuum vessel with special material or structure.

- Reduce the radial space occupied by magnet.
 - → Optimization of supporting structure and cooling line.
- The position of chimney need to be adjusted?