Physics Requirement & Detector Design for the CEP Manqi Ruan

提纲

- CEPC: 物理及其对探测器的性能需求
- CPEC CDR 基线探测器:
 - 思路、构造,
 - 其探测器性能、及其对需求的满足
- 新设计
 - 关键问题
- 小结

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 100M W Boson, 100B 1 Tera Z boson

Booster(50Km

- Precision test of the SM Low Energy
 - Low Energy Booster(0.4Km)

IP₂

Proton Linac

e+ e- Linac (240m)

IP4

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision...

Complementary

IP3

Higgs @ CEPC

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

CEPC Mechanic WS@DongGuan

- Leptons (electron & muon)
- Tau
 - Photon (and pi-0, etc)
 - Charged stable hadron
 - Pion, Kaon, Proton, ...
 - Neutral Hadron
 - Klong, neutron...
 - Jet: with flavor and charge
 - Missing energy/momentum

- Leptons (electron & muon)
- Tau
 - Photon (and pi-0, etc)
 - Charged stable hadron
 - Pion, Kaon, Proton, ...
 - Neutral Hadron
 - Klong, neutron...
 - Jet: with flavor and charge
 - Missing energy/momentum

- Leptons (electron & muon)
- Tau
 - Photon (and pi-0, etc)
 - Charged stable hadron
 - Pion, Kaon, Proton, ...
- Neutral Hadron
 - Klong, neutron...
- Jet: with flavor and charge
 - Missing energy/momentum

- Leptons (electron & muon)
- Tau
 - Photon (and pi-0, etc)
 - Charged stable hadron
 - Pion, Kaon, Proton, ...
- Neutral Hadron
 - Klong, neutron...
- Jet: with flavor and charge
- Missing energy/momentum

- Leptons (electron & muon)
- Tau
 - Photon (and pi-0, etc)
 - Charged stable hadron
 - Pion, Kaon, Proton, ...
 - Neutral Hadron
 - Klong, neutron...
 - Jet: with flavor and charge
 - Missing energy/momentum

- Leptons (electron & muon)
- Tau
 - Photon (and pi-0, etc)
 - Charged stable hadron
 - Pion, Kaon, Proton, ...
 - Neutral Hadron
 - Klong, neutron...
 - Jet: with flavor and charge
 - Missing energy/momentum

Key requirement

- Identify the key physics objects & measure them precisely
- Higgs (at c.m.s = 240 GeV)
 - 97% of Higgs events has jets in their final state...
 - Together with many other objects (lepton, photo, tau, missing energy-momentum...)
- Z (at c.m.s = 91.2 GeV)
 - 70% of Z decay into 2-jets: Finding the correct combination of final state particles inside jet
 - 10% decays into electron, muon & tau (and their anti-particles)
 - 20% goes invisible

CEPC Mechanic WS@DongGuan

CEPC Conceptual detector

A detector reconstruct all the physics object (lepton, photon, tau, Jet, MET, ...) with high efficiency/precision

High Precision VTX located close to IP: b, c, tau tagging High Precision Tracking system: δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹) PFA oriented Calorimeter System (~o(10⁸) channels): Tagging, ID, Jet energy resolution, ect

Sim Higgs @ CEPC

Key requirement

- Identify the key physics objects & measure them as precisely as possible
- Higgs (at c.m.s = 240 GeV)
 - 97% of Higgs events has jets in their final state...
 - Together with many other objects (lepton, photo, tau, missing energy-momentum...)
- Z (at c.m.s = 91.2 GeV)
 - 70% of Z decays into 2-jets: Finding the correct combination of final state particles inside jet
 - 10% of Z decays into leptons
 - 20% goes invisible

PFA Oriented concept

Dedicated ToF Or ECAL Layer with TDC Equipped Chips

delta(T) ~ 50 ps

To balance the efficiency & Purity of time measurement...

Tracker, TPC: R = 1.8 m

ECAL: 84-90 mm W

HCAL: ~1000 mm Iron

Solenoid (3T) + Yoke

Tracking

Clustering - Separation

Hang Zhao. CEPC CDR

27/08/20

CEPC Mechanic WS@DongGuan

Jets

Physics Objects

CEPC Mechanic WS@DongGuan

Applied on Higgs physics, et.al

CEPC Mechanic WS@DongGuan

K_V

	mass (kg)	mass (ton)
MDI	11,909.85	11.91
LumiCal	118.46	0.12
VXD	0.85	0.00
SIT	15.70	0.02
SET	259.62	0.26
FTD	3.21	0.00
TPC	1,750.47	1.75
Ecal	161,489.50	161.49
Hcal	906,668.80	906.67
Yoke	12,685,708.80	12,685.71
Magnet	262,841.11	262.84

MDI

LumiCal

Magnet + Yoke

New design

- PFA Oriented Baseline
 - Excellent object finding + Jet reconstruction: fulfills the core physics requirement
 - EM resolution is not really good...
 - Very demanding DAQ + Electronic system
 - TPC might be difficult at Tera-Z operation, also difficult for mechanism & integration
- New design
 - Crystal ECAL;
 - Wire Chamber: cluster counting give good dE/dx measurements...
 - Thin Magnet between ECAL & HCAL, while HCAL serve as part of the Yoke

CEPC Silicon + Drift Chamber Tracker: v1.0

- Based on the baseline Silicon + TPC
- Replace TPC layers with two drift chamber layers
 - SIT 3&4 set at R=1.0m / larger cell size of DC than TPC

彼此垂直的晶体条 + Silicon Layers with 1*1cm granularity...

CEPC Mechanic WS@DongGuan

Yoke

CEPC Mechanic WS@DongGuan

A preliminary layout...

CEPC Mechanic WS@DongGuan

New design: Key questions

- Wire Chamber: Geometry to reach the requirement (of dE/dx resolution)?
- Wire Chamber + Silicon: Geometry to reach the momentum resolution
- ECAL
 - Compatibility with PFA & Reconstruction
 - Material budget for tracker
- Yoke
 - Material budget allowance (~ o(10) cm Iron)
 - Thickness?
 - Physics requirement for special physics: i.e., Long Lived Particle search

CEPC Mechanic WS@DongGuan

- General:
 - Intergratibility & Support
 - MDI
 - Mechanics, Cooling Power, DAQ Electronics

Summary

- CEPC: a promising Higgs/Z factory, clear requirement on the detector performance
- PFA Oriented baseline: fulfill the core CEPC physics requirements (object + jet); but has some shortages...
- To overcome these shortage, new designs are proposed, with many critical questions to be answered
- Mechanics is critical!
 - W.r.t CDR: Targeting the critical MDI part & significantly improved the Yoke
 - Many Challenges ahead, towards the new designs.
- Next step: my suggestion
 - Mechanics: Exercise with Magnet between E/HCAL
 - Physics: answer critical questions & converge to a physics design of the new concept(s)

Backup

Summary

- Higgs, portal to unknown
- CEPC, an electron-positron Higgs factory & an precision EW machine
 - o(0.1-1%) level accuracy in absolute measurement of Higgs Branching ratio and couplings
 - Higgs total width measured to 2.8%
 - Good access to SM Higgs rare decays (μμ, γγ, Zγ)
 - Higgs exotic decays, limited to better than 0.1% level
 - EW Program significantly enhance the access to the New Physics
 - Highly complementary to pp machine
- Simulation study: toward a better understanding of its Physics potential
 - Good understanding toward absolute Higgs coupling measurement
 - Toward detector optimization & measurement with detector optimizations

Eur. Phys. J. C (2018) 78: 426

Performance at

Parameters

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->µµ) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->γγ) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.

Color Singlet identification: Full hadronic WW-ZZ separation, an example

- Low energy jets! (20 120 GeV)
- Typical multiplicity ~ o(100)
- WW-ZZ Separation: determined by
 - Intrinsic boson mass/width
 - Jet confusion from color single reconstruction jet clustering & pairing
 - Detector response

Benchmark measurements: Higgs

Jets at the Higgs Signal

- SM Higgs
 - 0 jets: 3%
 - Z \rightarrow II, vv (30%); H \rightarrow 0 jets (~10%, TT, µµ, γγ, γZ/WW/ZZ \rightarrow leptonic)
 - 2 jets: 30%
 - $Z \rightarrow qq$, $H \rightarrow 0$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow 2$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow WW/ZZ \rightarrow semi-leptonic$.
 - 4 jets: 59%
 - $Z \rightarrow qq$, $H \rightarrow 2$ jets.
 - $Z \rightarrow II$, vv; $H \rightarrow WW/ZZ \rightarrow 4$ jets.
 - 6 jets: 8%
 - $Z \rightarrow qq$, $H \rightarrow WW/ZZ \rightarrow 4$ jets.
- 97% of the SM Higgsstrahlung Signal involves Jets

Higgs @ LHC

PP collider: High productivity but low finding efficiency ~already 10⁶ Higgs in Run 1 data...

Higgs signal: found via the decay final states.

 $\sigma(AA \rightarrow H \rightarrow BB) \sim g^2(HAA)g^2(HBB)/\Gamma_{total}$

