Geometry and cooling for the Lumi detector in MDI

RING CENTER

Progress and perspectives

- Bhabha cross section for Z pole : reference to Z-pole, theoretical BHLUMI calculation done beam-pipe φ ~ 28 mm → Bhabha θ_{min} < 30 mRad → σ(Bhabha) > 50 nb
- GEANT study for luminosity δL/L ~ 10⁻⁴
 beampipe material → multiple scattering, EM shower
 beampipe shape, detector position → spatial resolution
 - LumiCal Geometry and Mechanics
 Si-ladder for electron δθ ~ 1.5 μRad resolution
 Si-wafer surrounding beampipe, Z-position measurement
 LYSO Calorimeter tagging beam scattered electron/photon
 Flange details and geom NOT yet optimized

R&D migrating to hardware and electronics

Bhabha detection

e⁺e⁻ → e⁺e⁻ elastics scattering
 Event signature
 1. E(e[±]) = E_{beam}
 2. e⁺, e⁻ Back-to-Back

• NLO
$$e^+e^- \rightarrow e^+e^-\gamma$$

~1% events

- 1. e⁺, e⁻ approximately Back-to-Back
- 2. one electron E' < E_{beam}
- 3. Detector e/γ ID, spatial resolution

Luminosity precision

Bhabha back-to-back boosted by 33 mRad beam crossing

- Bhlumi electrons boosted for the 33 beam crossing by ~16.5 mRad to +x direction
- Compared for Bhabha selection conditions

CMS 10 ~ 80 mRad		LAB detect ONE electron		LAB detect both electrons	
BARE1		off beampipe	off beampipe	off beampipe	off beampipe
		full phi coverage	cut off ±30mm	full phi coverage	cut off ±30 mm
Nevents	457232	102535	20277	29194	19216
Xsec (nb)	1168.3	262.0	51.81	74.60	49.10

Si octagon wafers surrounding beampipe Si-ladders surrounding the beampipe → minimized smearing by multiple scattering/shower Electron traversing 1 mm thick Al beampipe @30 mRad, Z = 0.5 m, dZ traversing beampipe = **33** mm

Position(Hits) – Electron shower

LumiCal assembly

 Si-ladder assembled on CNC table alignment pin/screw to beam-pipe support pin position precision ~5 μm CNC survey of Si strip position ~ 3 μm readout-hybrid heat dissipation → flange water cooling

O LYSO + SiPM calorimeter

assembled in Steel container, crystal position **~10 μm** mounted on Quad-magnet, alignment pin **~10 μm**

LumiCal Si-ladders: impact position

Bhabha electron theta resolution: δL/L < 10⁻⁴ → δϑ = 1.5 μRad @fiducial edge θ_{min} = 30 mRad @ Z= 0.5m, dr= 0.75 μm; dz=dr/tan(.03)= 25 μm
Si-ladders in z-phi 2-D assembly: z-strips for theta impact position: <200 μm pitch for resolution <25 μm phi-strips: ~ 1 mm pitch to correct boosted direction
Assembly precision:

wafer on ladder module: CNC table glue/survey to $3 \mu m$ ladder on beam-pipe support: alignment pin to $10 \mu m$ in Z Beam-pipe over 1 m thermal/humidity \rightarrow deviation ~5 μm ?

• *Heat dissipation:*

pin

8 pairs of z-phi ladders, 30 chips → 100 W /per z-side

as pin

LYSO

Quad

(APV25 0.4 W/chip, 28 chips in Z, 128 ch, 0.1 mm pitch z-coverage = 360mm)

Si-ladder

LumiCal Si-wafer option

LumiCal Si wafer volume

round beampipe $\phi = 28 \text{ mm}$ $\theta = 30 \text{ mRad} @ z = 500 \text{ mm}$ Multi. scattering sigma= 50 µm

Assuming Si strip 300 μ m thick, pitch = 100 μ m,

resolution by the fraction of entrance strip (low z)

- ➔ fire 100 strips @ 30 mRad
- rather extreme for Si strip resolution by charge sharing at the edge strips

LumiCal LYSO+SiPM calorimeter

• Upstream materials:

beam-pipe, flange → ~5 X0

shower smearing \rightarrow shower center ~1 mm precision

Pre-shower Si layer for e/γ ID :

add Si-wafer: LYSO front is ~ shower-maximum position

• Readout of SiPM :

is compact behind LYSO bars of 2x2 mm² surface

• Assembly precision:

LYSO ring ~50 kg, supported by alignment pins/screws, ~100 μ m is sufficient fabrication precision can reach ~10 μ m

LumiCal Calo options

Calorimeter options

spatial resolution is not good
LYSO + SiPM is compact
minimize space for electronics

add Si-wafer as preshower

for e/γ ID, NLO Bhabha etc

○ Flange/LYSO front

Summary

- Bhabha detection studied for luminosity precision
 δL/L ~ 10⁻⁴
- With beampipe *\$\phi\$*=28 mm, \$\vartheta_{min}\$ ~ 30 mRad
 Bhabha X-section matches to Z(qq) pole
- electron θ resolution at ϑ_{min} edge :
 δL/L ~ 10⁻⁴ → σ_{ϑmin} = 1.5 μRad
- Si-ladders surrounding beam-pipe :
 θ is measured in Z, $\sigma_{\vartheta min} \rightarrow \sigma_z = 25 \ \mu m$
- $\circ~$ Multiple-Scattering of beampipe RMS in Z = 50 μm

→ Si-ladders measure the MS profile
 $\sigma_{\theta min}$ estimated for the measured MS profi
 → Si-ladder of 100 µm pitch in Z
 $\sigma_{\tau}^{measured}$ is expected for ~ 10 µm

Backup CDF tracker assembly

CDF LOO assembly

One & group of strips installed at a time.

In every case the strips were aligned to the nominal cylinder axis to better than 50 µm over the 90 cm length.

 \Rightarrow Strips are parallel to better than 755μ rad

SVXII Assembly

Silicon Detector Installation

