ON THE SILICON TRACKER

Hongbo Zhu 28 August 2020

REQUIREMENTS

- Large area tracking system to deliver high track momentum resolution
- Silicon tracker: multiple high precision measurements along the track particle trajectory;
 - Spatial resolution $\sigma_{r\phi}{\sim}7~\mu m$; time resolution $\sigma_t{\sim}10~ns$; low material budget, low cost

SENSOR TECHNOLOGY: HV-CMOS

- HV-CMOS sensor can provide an alternative solution to conventional microstrip detectors for a large-area tracking system
 - lower cost, lower material budget, higher performance
- Adopted for Mu3e (MuPix), explored but dropped for the ATLAS ITk-Pixel/Strip (project time constraints), considered for the LHCb tracker upgrade, CLIC and CEPC silicon tracker + several other applications
- ATLASPix3 for performance evaluation and module/stave prototyping; next generation fabricated with a domestic process being considered

28 August 2020

Silicon Tracker

BUILDING A DEMONSTRATOR

 To build a short stave to demonstrate the system feasibility → capability to readout multiple modules (reusing ATLAS designs/components)

Thermo-mechanical support (ATLAS ITk-Pix/Strip)

SUPPORTING STRUCTURES

ATLAS-ITK: 0.5% X₀ ITK alpine stave (+module)

ATLAS IBL: 0.7% X₀ IBL stave, (+module)

ALICE Inner Layer Stave ~0.3% X₀

ing Ducts

CEPC design target:

0.65% X_0 for stave + modules

Crucial elements:

- Light-weighted carbon truss structure
- Al based flex (prototype with Cu)

Possibility to produce them in China to be explored

28 August 2020

Silicon Tracker

SUPPORTING STRUCTURE FOR DEMONSTRATOR

ATLAS ITk Strip

Power dissipation: 60 mW/cm²

Support, electrical services & cooling, Material budget: $0.7\%X_0$

ATLAS ITk-Pixel Power dissipation: 700 mW/cm²

CO₂ coolant in 2.5mm OD tube

Support, electrical services & cooling, Material budget: 1.5%X₀

Demonstrator			
Can be sca	led up to		
a full barre	l stave		

Parameter Value	Units
Active Length 248.2	mm
Active Width 80.6	mm
Number of Quad Modules 12	
Number of HV-CMOS ASICs 48	
HV-CMOS ASIC Dimensions 20 x 22	mm
Total HV-CMOS area 211.2	cm ²
Total Power (@0.14W/cm ²) 27	W

T. Jones (Liverpool)

- ATLAS ITk-Strip structure with water cooling (not CO₂) to cope with total power dissipation of 28 W (ATLASPix3) + ? (I/O board)
- Assume for T_{ASIC} = 30 °C and on/off temperature rise $\Delta T_{Off/On}$ = 20 °C

COOLING & TEMPERATURE CONTROL

Temperature dependent performance of HV-CMOS sensors; temperature variation tolerance?

Mupix8: Temperature Dependence

MATERIAL BUDGET

Table 9.4: Radiation length estimates for the barrel stave and end-cap petal. Power ASICs and the EoS are not included. These numbers need to be confirmed with full stave and petal designs.

Barrel		End-Cap		
Component	% Radiation Length	Component	% Radiation Length	
Stave Core	0.48	Petal Core	0.46	
Bus Cable	0.18	Bus cables	0.23	
Short-Strip Modules	1.08	Modules	1.04	
Module Adhesive	0.06	Module adhesive	0.05	
Total	1.80	Total	1.78	

DEMONSTRATOR MATERIAL BUDGET

Stavelet Demonstrator

Stave el	Comp	Material	Thick [um]	X0 [cm]	X0[%]
Module	FPC metal	Al (Cu)	50	8.896 (1.435)	0.056 (0.348)
	FPC insulat	Polyimide	100	28.41	0.035
	ASIC	Silicon	100 (150)	9.369	0.106 (0.160)
	Glue	Eccobond 45	100	44.37	0.023
	Total (Al and Si 100um) Total (Al and Si 150um) Total (Cu and Si 150um)				0.22 0.274 0.566
Everything else	Total				0.6
Total (Module Al and Si 100um)0.82Total (Module Al and Si 150um)0.87Total (Module Cu and Si 150um)1.16			0.82 0.874 1.166		

ALICE Outer Layer Stave

Stave element	Component	Material	Thickness (µm)	$\begin{array}{c} X_0 \\ (\mathrm{cm}) \end{array}$	X_0 (%)
Module	FPC Metal layers	Aluminium	50	8.896	0.056
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Module plate	Carbon fibre	120	26.08	0.046
	Pixel Chip	Silicon	50	9.369	0.053
	Glue	Eccobond 45	100	44.37	0.023
Power Bus	Metal layers	Aluminium	200	8.896	0.225
	Insulating layers	Polyimide	200	28.41	0.070
	Glue	Eccobond 45	100	44.37	0.023
Cold Plate		Carbon fleece	40	106.80	0.004
		Carbon paper	30	26.56	0.011
	Cooling tube wall	Polyimide	64	28.41	0.013
	Cooling fluid	Water		35.76	0.105
	Carbon plate	Carbon fibre	120	26.08	0.046
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.080
Total					0.813

ALICE Inner Layer Stave

Table 4.1: Estimated contributions of the Inner Layer Stave to the material budget.

Stave element	Component	Material	Thickness (µm)	$\begin{array}{c} X_0 \\ (\mathrm{cm}) \end{array}$	X_0 (%)
HIC	FPC Metal layers	Aluminium	50	8.896	0.056
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Pixel Chip	Silicon	50	9.369	0.053
Cold Plate		Carbon fleece	40	106.80	0.004
		Carbon paper	30	26.56	0.011
	Cooling tube wall	Polyimide	25	28.41	0.003
	Cooling fluid	Water		35.76	0.032
	Carbon plate	Carbon fibre	70	26.08	0.027
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.018
Total					0.262

BEYOND THE DEMONSTRATOR

- Improved design over the ATLAS ITk-Strip stave structure (less material) or new design of a long truss structure with sufficient rigidity
 - Sufficient cooling capacity, alignment/monitoring with laser

• Reliable power distribution, data/clock transmission over long distance

MODULE MATERIAL CALCULATION

MODULE MATERIAL CALCULATION

Figure 7.4: Fractional contributions for different materials to the radiation length of the barrel modules. Left: Short-strip barrel module. Right: Long-strip barrel module.

```
0.65% X<sub>0</sub> 0.55% X<sub>0</sub>
```