(IHEP, Chinese Academy of Sciences)

and the state of the

Status of Pixel Vertex Detector

Zhijun Liang

Institute of High Energy Physics Chinese Academy of Sciences

Vertex detector: Physics goal

- Higgs precision measurement
 - $H \rightarrow bb$ precise vertex reconstruction ullet
 - $H \rightarrow \mu \mu$ (precise momentum measurement) ullet

Need tracking detector with high spatial resolution, low material

Main technology

- High spatial resolution technology \rightarrow pixel detector ullet
- Low-mass detector technology ullet
- Radiation resistance technology ullet

CEPC vertex detector R & D

- Three on-going R & D programs on vertex detector
 - Previous update in CEPC day (June 15th) https://indico.ihep.ac.cn/event/11875/
- This talk focuses on MOST2 project
 - MOST2 aims to build full-size vertex detector prototype

Funding agency	Process	International collaborators	Objectives of the project	schedule
MOST1	CMOS	Strasburg IPHC	Small pixel size design with in- pixel digitization and low power frontend	2016.6-2021.5
MOST2	CMOS	IFAE/Oxford/ Livepool	full-size vertex detector prototyping (Full-size sensor support structure, module)	2018.5-2023.4
NSFC	SOI	KEK/SOIPIX collaboration	Verification of SOI process with small pixel size and low noise design	2016-

MOST2 vertex detector R & D: Research Goal

- Produce a world class vertex detector prototype
 - Spatial resolution $3 \sim 5 \mu m$ (pixel detector)
 - Radiation hard (>1 MRad)
- Preliminary design of prototype •
 - Three layer, module $\sim 1 \text{ cm} \times 12 \text{ cm}^2$

Typical tracker

Typical module

Resolution

ATLAS/CMS upgrade (~15 µm)

> Alice upgrade (**5~10 µm**)

World leading This project (3~5 µm)

Overview of MOST2 vertex detector R & D

- Can break down into sub-tasks:
 - CMOS imaging sensor chip R & D

 - Detector assembly
 - Data acquisition system R & D

CMOS imaging sensor prototyping

Detector module (ladder) Prototyping

• Detector layout optimization, Ladder and vertex detector support structure R & D

Full size vertex detector Prototype

Beam test to verify its spatial resolution

Research Team in MOST2 silicon project

4 institutes

课题2: IHEP - 中国科学院高能物理研究所 SDU - 山东大学 NJU - 南京大学 NWU - 西北工业大学

Institutes
CCNU/IFAE
NWPU
SDU
NJU

Tasks

chip modeling, Pixel Analog, PLL block **Detector module (ladder) prototyping** Data acquisition system R & D x detector assembly and commissioning **CMOS sensor chip: Pixel Digital** CMOS sensor chip: Periphery Logic, LDO chip: Bias generation, TCAD simulation Sensor test board design Irradiation, test beam organization

Achievement Presentation and Assessment Methods

	考核	指标2			
指标名称	立 可 时 有 指 状 态	中期指标值 /状态 ³	完成 时指 标值/ 状态	考核方式(方 法)及评价手 段 ⁴	
硅径迹探 测器空间 分辨率	无	研制出小型 传感器芯 片,像素单 元尺寸小于 或等于25 微米 ×25 微米。	3-5 微米	同行专家评 间。过离我们。 一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次一次	- Mid-ter - Final :
所设计的 抗辐器能 承受的总 剂量	无	完成传感器 的初步设 计,通过仿 真初步验证 其抗辐照性 能	1 MRad	同行专家评 审(提供传 感器的设计 与测试报告 供专家评审)	- mid-te - Final

Silicon Detector

Assessment index

Spatial resolution

m: produce 25*25 µm pixel size chip 3-5 µm resolution in Beam test

Radiation hardness

erm: verified by TCAD simulation : Total ionization dose >1 Mrad

CMOS MONOLITHIC PIXEL SENSOR

- CMOS Monolithic pixel (CIS process) is ideal for CEPC application
 - low material budget (can be thin down to 50μm)
 - This project use TowerJazz CIS 180nm technology
- Hybrid pixel technology developed by ATLAS and CMS
 - Thickness of sensor is about 200~300 μm
 - Need to bump bonding with readout ASIC (ASIC thickness is about $300 \mu m$)
 - Material budget about silicon sensor is about 10 times larger than CIS process

Monolithic Pixels

CMOS Sensor chip R & D

- The existing CMOS monolithic pixel sensors can't fully satisfy the requirement
- Major Challenges for the CMOS sensor •
 - Small pixel size -> high resolution (3-5 μm)

 - Radiation tolerance (per year): 1 MRad

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA
Pixel size	\checkmark	Χ	\checkmark
Readout Speed	Χ	\checkmark	Χ
TID	X (?)		\checkmark

• High readout speed (<500ns deadtime @40MHz at Z pole) -> for CEPC Z pole high lumi

Sensor prototyping

- Completed two round of sensor prototyping
- 1st Multi-wafer project chip (Taichupix1)
 - Submitted in June 2019, received in November 2019
 - Test functional blocks
 - pixel array (in-pixel amplifier and digital logic)
 - Periphery block: digital readout architecture
 - **Periphery block:** PLL and Serializer •
 - **Periphery block:** LDO and power supply
 - 2nd Multi-wafer project chip(Taichupix2)
 - Submitted in Feb 2020, received in July 2020
 - Major bugs fixed in Taichupix1
 - Radiation hard design (enclosed gate) in pixel analog

Taichupix1 Chip size: 5mm×5mm Pixel size: 25µm×25µm

Taichupix2 Chip size: 5mm×5mm Pixel size: 25µm×25µm

New proposed readout architecture in TaichuPix

- New readout architecture ullet
- \rightarrow reduce power consumption and reduce pixel size **CEPC** readout time requirement: <500ns deadtime @40MHZ(Z pole)
- ullet
- - Priority based data driven readout; time stamp at EOC Dead time: 2 CLK for each pixel (50ns @40MHz CLK)
- Two digital pixel designs: FEI3-like and ALPIDE-like design **2-level FIFO architecture**
 - L1: column level, to de-randomize injecting charge
 - L2: chip level, to match in/out data rate between core and interface
- Trigger readout:
 - Coincidence by time stamp, matched event read out

Taichu-1 Column-drain readout

Pixel Analog design

- **CEPC time stamping precision requirement:**
- 25-100ns, better to time stamping each collision at Z pole
- **Taichu-1 pixel analog design:**
- 50ns~150ns (based one standard CMOS MAPS tech.)
- **Consider to use depleted CMOS MAPS** \bullet

Standard : no full depletion

Modified : full depletion, faster charge collection

Pixel Analog Testing

ullet

 \bullet

Tested time walk measurements

Pixel analog was tested by the probed output

• The tested performance was at the same level as in simulation, though the test condition is not perfect Tested noise 5.7e-

Tested time walk $36ns(@300 e^{-1.5 ke^{-}})$

PLL and Serializer Testing

- ullet
- ullet
- ullet
- •

PLL and the serializer was thoroughly tested and proved PLL's tuning range 0.32~2.91GHz agrees with the simulation Good and robust eye-diagram observed at 2.24GHz, with the total jitter < 150ps (@ error rate < e^{-12})

Serializer could run steadily @ 2.24GHz for trigger less mode

TCAD simulation model

Radiation hardness

- current after 1Mrad radiation
- X ray irradiator in IHEP has been setup for irradiation tests

Collected charge Before irradiation

Charge collection for matrix

Collected charge

Sensing diode was simulated by TCAD to study its TID behavior The impact is negligible for the charge collection, and the leakage

X ray irradiator

Status of TaichuPix2

New features

- A 64*192 pixel array with the same dimension as Tcpx1
- 32 + 32 double column modified FE-I3 readout
- 32 double column modified ALPIDE readout
- Newly integrated blocks: Two LDOs for power supplies
- 8b10b encoder added for Triggerless output
- X-chip buses added for multiple chip interconnections
- **Functional verification status**
- IO rings works fine (problem solved)
- Bandgap reference output proved (oscillation cancelled)
- Periphery blocks tested ullet
- PLL lock function preliminarily proved •
- Pixel array digital communication with the periphery ullet

received chips in July 23rd, 2020

Taichupix2 on test board

Oscillation issue reported in last update Fixed in TaichuPix2

Summary of CMOS Sensor chip R & D

- Major achievement in two round of prototyping
 - High Spatial resolution •
 - Pixel size reduced to 24×25 µm → reach midterm Assessment index (实现中期指标) •
 - **Radiation hard** •
- Next steps •
 - 3rd Multi-wafer project (to be submit early 2021)
 - Goal: All functional blocks work together
 - Maybe skipped if 2nd MPW chip is working
 - Full size sensor engineering run (in August 2021) •
 - Goal: full-size, full functionality

• According to TCAD simulation, the impact is negligible for the charge collection, and leakage current after 1Mrad total ionization dose radiation **→** reach midterm Assessment index (实现中期指标)

Detector module (ladder) R & D

- Completed preliminary version of detector module (ladder) design ullet
 - Detector module (ladder)= 10 sensors + support structure+ flexible PCB+ control board
 - Sensors will be glued and wire bonded to the flexible PCB
 - Flexible PCB will be supported by carbon fiber support structure
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB

3D model of the ladder

Flexible PCB prototype

Profile of flexible PCB

		Achieved Thickness (µm)	Optimiz goals (
4	Polyimide	25	12
	Adhesive	28	15
	Plating Cu	17.8	17.
	kapton	50	50
	Plating Cu	17.8	17.
	Adhesive	28	15
	Polyimide	25	12

Support structure of the ladder

- Support structure of the ladder: 3 layer of carbon fiber, 0.15mm thick
 - 3 time thinner than conventional carbon fiber
 - A few times more rigid than conventional carbon fiber •
 - for tracks with small $\cos\theta$, radiation length ~0.015 X0 (reduce multi-scattering)

Ladder support structure 3D model

Finite elements analysis Max def. under full load: 5.3 um

Conventional carbon fiber

Flexible PCB prototype

Vertex Detector Prototype R & D Completed preliminary version of detector engineering design

- - 3 double layer barrel design
 - 10 modules in inner layer, 22 modules in 2nd layer, 32 modules in outer layer •
 - Start thermal design (air cooling)
- Physics simulation to optimize vertex detector layout design. • The length of inner layer pixel should be the same as other two layers Inner pixel radium should be as close to beam pipe as possible

Impact parameter resolution Vs beam pipe radius

3D Model of vertex detector

Cooling design

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Taichupix : $\leq 100 \text{ mW/cm}^2$. (trigger mode)
 - CEPC final goal : $\leq 50 \text{ mW/cm}^2$
- Cooling simulations of a single complete ladder with detailed FPC were done. • Need 2 m/s air flow to cool down the ladder to 30 °C
- - Testbench setup has been designed for air cooling , vibration ...

Max temperature of ladder ($^{\circ}\mathrm{C}$) (air temperatu					
Power Dissipation (mW/cm2)	Air speed (m/s)	5	4	3	
100		19.6	21.8	25.0	30
150		26.9	30.1	35	43
200		34.2	38.6	45.1	56

Test setup for ladder cooling Use compressed air for cooling

Plan for test beam

- Expect to perform beam test in DESY(3 7GeV electron beams)
 - IHEP test beam facility as backup plan (a few hundreds MeV electrons)
- Enclosure for detector with air cooling is developed for beam test
 - Beam is shooting at one sectors of vertex detectors ullet

Beam

Data acquisition system

- Preliminary design of data acquisition system(DAQ)
 - Ladders are reader by readout boards ullet
 - All readout boards connected to computer through a switch ullet
 - User interface developed ullet
 - DAQ tested in five modules equipped with MIMOSA sensors \bullet

DAQ Tests with 5 MIMOSA chips

DAQ system data display **Tested with MIMOSA modules**

Publications and International talks **Publication:**

International conference talks:

- \bullet
- Circuits and Systems, Nov. 27-29, 2019, Genova, Italy.
- imaging detectors, International workshop on radiation imaging detectors, July 2019, Crete, Greece
- 17, 2019, Oxford, UK
- Oxford, UK

High data-rate readout logic design of a 512×1024 pixel array dedicated for CEPC vertex detector

X. Wei,^{a,1} W. Wei,^b T. Wu,^{c,d} Y. Zhang,^b X. Li,^b L. Zhang,^e W. Lu,^b Z. Liang,^b J. Dong,^e L. Li,^e J. Wang,^{*a*} R. Zheng,^{*a*} R. Casanova,^{*d*} S. Grinstein,^{*d*} Y. Hu^{*f*} and J. Guimaraes da Costa^{*b*}

JINST 14 (2019) C12012

A full functional Monolithic Active Pixel Sensor prototype for the CEPC vertex detector

Tianya Wu^{1,2}, Raimon Casanova², Wei Wei³, Xiaomin Wei⁴, Ying Zhang³, Liang Zhang⁵, Xiaoting Li³, Zhijun Liang³, Joao Guimaraes da Costa³, Weiguo Lu³, Jianing Dong⁵, Long Li⁵, Wang Jia⁴, Ran Zheng⁴, Ping Yang¹, Guangming Huang¹ and Sebastian Grinstein²

IEEE ICECS (doi: 10.1109/ICECS46596.2019.8965105.)

Joao Guimaraes Da Costa, CepC phys/detectors, Workshop on the Circular Electron-Positron Collider, EU Edition, April 15 - 17, 2019, Oxford, UK T. Wu, A full functional Monolithic Active Pixel Sensor prototype for the CEPC vertex detector, in proceeding of International Conference on Electronics

Xiaomin Wei, High data-rate readout logic design for 1024*512 CMOS pixel array dedicated for CEPC experiment, International workshop on radiation

Ying Zhang, Overview of the chip design for the MOST2 CEPC vertex project, Workshop on the Circular Electron-Positron Collider, EU Edition, April 15 -

Wei Wei, Full size pixel chip for high-rate CEPC Vertex Detector, Workshop on the Circular Electron-Positron Collider, EU Edition, April 15 - 17, 2019,

Future plan

- 3rd Year:
 - 3rd CMOS sensor fabricated and tested
 → may be skipped if 2nd MPW chip is fully working
 - Final support structure engineering design co
 - Fabricated support structure for ladders
- 4th Year:
 - Competed R & D large area sensor
 - Manufactured the support structure for whole
 - Assembling and installing the detector prototy
 - Completed DAQ system for whole detector
- 5th Year:
- Completed detector assembly and commission
- Test beam and data analysis
- Finish assembling of prototype

	2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 H2 H1 H2
	Mechanical support structure
	Layout-Optimization
	Preliminary design of ladder supporting structure
	Preliminary design of detector supporting structure
	Engineering plot design of supporting structures production of prototype of ladder support
	Final design of ladder supporting structure
	Final design of detector supporting structure
	11/26 Complete the Manufacture of all mechanical support structures
	The sensor
	Electronics design in sensor pixel, design of anti - irradiation element
mpleted	Peripheral digital circuit, trigger, clock and power supply ladder design, and chip anti-radiation performance si
	1st MPW
	2nd MPW
	Integration of fully functional small area chip design
	3rd MPW
	Design large area, full function sensor chip
	First engineering batch silicon wafer processing
	Readout electronix and data acquisition system
	Development of the front and circuit board for the initial MPW chip
e detector l	Development of data acquisition system for a single sensor chip
	ladder readout electronic
uno	Development of data acquisition system for a single detector ladder
ype	Prototype readout electronic
	The exactly design and essentially of the metators
	The overall design and assembly of the prototype
	Develop the assembly process of detector ladder
	Develop the assembly process of detector prototype and develop the automatic assembly sys
	Assemble and test the first detector ladder
ning	Assemble and test the rest of detector ladders
IIIIg	Assemble and debug detector prototype
	5/31 • Complete the assembly and debugging of detector prototype
	Test and data analysis
	Test the second MPW chip
	Test engineering chip
	Beam testing and data analysis
	I development of the simulaiton, reconstruction and analysis software
	development of the simulaiton software
	development of the analysis software
	Beam test experiment
	The data analysis
	2/28 Complete the final project report

2030 H1	H2	203
111	112	1.14
		_
nulati	on	
tem		_

International collaboration

- IFAE(Spain): very active in CMOS Sensor design and testing
- Liverpool (UK): Tracker mechanical design,
- Oxford(UK): CMOS sensor design validation, thermal design
- RAL(UK): Pixel module design
- Queen Mary(UK): module mechanical design (Zero mass concept)
- Strasbourg (FR): CMOS sensor design, Tracker mechanical design
- University of Massachusetts (US): Tracker mechanical design, thermal design

In 2019, we have one engineer visited Oxford and Liverpool for 4 weeks, learned a lots about silicon.

Lab visit in Oxford

Mu3e ladder, Atlas barrel strip stave prototype.

Labs visit in Liverpool

Module of Alice's OB tracker, Advance material Lab

Risk and Opportunity

- Risk: Schedule for sensor chip is very tight
 > Opportunity to skip 3rd Multi-project runs, if 2nd MPW chip is fully working
 - May submit full-size sensor engineering run in early 2021 (7 months earlier than schedule)
 - Save 0.4M RMB in funding
- Risk: 1st full-size sensor engineering runs doesn't work completed
- \rightarrow If this happens, we need 2nd full-size sensor engineering runs
- \rightarrow risk of not having enough fund for 2nd engineering runs (~2M RMB)

MPW chip is fully working n early 2021 (7 months earlier than schedule)

n't work completed gineering runs ering runs (~2M RMB

Mid-term review of MOST2 project

• Midterm review meeting (Aug 20-21)

国家重点研发计划"高能环形正负电子对撞机关键技术研发与验证"项目 中期自查会议

2020.08.20-21, IHEP

Mid-term review of MOST2 project

- Comments from review:
 - This topic is a cutting-edge technology of high-energy particle detection,
 - Good progress of the project •
 - Suggestion: •
 - Check uniformity of the sensors
 - Should try to further reduce the power consumption
 - Should start testing radiation hardness of the sensor chip
 - Should pay more attention to mechanical support, air cooling , power consumption
 - \rightarrow related to spatial resolution of vertex detector prototype
 - This project may be short of funding at the end, suggest to give more support

Summary

- Completed two round of CMOS sensor prototyping
 - New readout architecture to reduce pixel size to 25µm*24µm → Reach midterm Assessment index (实现中期指标)
 - According to TCAD simulation Radiation hardness >1Mrad total ionization dose radiation
 - → Reach midterm Assessment index (实现中期指标)
- Complete preliminary design for the followings
 - Detector module (ladder) ullet
 - Vertex detector overall support structure
 - Data acquisition system
- Strong international connection, large impact to the community if the project success.
- Next major milestones
 - Competed full size full functionality sensors design (3rd year)
 - Manufactured support structure for vertex detector (4th year) •
 - Finished detector assembly and commissioning and beam test (5th year)

backup

Mid-term review of MOST2 project

中期执行情况评述:(包括:1.对课题中期进展的总体评价,是否完成预定任务、达到预期目标; 2. 取得的阶段性成果和人才培养情况; 3. 经费管理使用情况; 4. 课题组织管理情况等; 5. 检查 等级建议)🚽

该课题的工作属高能粒子探测的前沿技术,具有研究探索性质,虽然有疫情影响,但工作进展 比较顺利,基本按照原进度进行,研制出 25 微米*25 微米的小型传感器芯片,做了功能测量,模拟 研究给出了传感器的抗辐照性能。 🚽

主要问题及建议: (包括课题执行中存在的重大问题,对项目更好达到预期目标的具体建议等。)

除芯片的电性能外, 更需要注重一致性, 信号的阈值等粒子探测方面的研究。 功耗方面还需进 一步降低。建议对芯片的抗辐射性能进行测量。重视达到位置分辨率指标的机械、气流、 功耗等的影响。

经费可能紧张,需要给以更多支持~

2

÷

专家组长 (签字): ようう

2020年 8月20日

Budget status

- Implementation rate (执行率) is about 60% for first two years •
 - Cost profile is not linear, expect to spend more in 3rd and 4th year for detector fabrication ullet

 - Device fee: will purchase gantry system for automatic assembly in next $1 \sim 2$ months

序号	预算科目名称	total	Budget until Midterm	Implementat ion until 2020/6/30	Rate of expense/total budget	Rate of expense/midte rm budget
2	() direct fee	1047.700	402.583	234.84	22.41%	58.33%
3	1, device fee	196.300	176.2	53.11	27.06%	30.14%
4	(1) purchase device	196.300	176.2	53.11	27.06%	30.14%
7	2、material fee	235.66	112.49	52.01	22.07%	46.24%
8	3、testing fee	299.8	9.45	2.20	0.73%	23.28%
9	4、power fee	20.64	8.26	0.00	0.00%	0.00%
10	5、 travel/conference/i nternational communication	123.81	39.9	44.80	36.18%	112.28%
11	6、publication	8.5	3.4	1.90	22.35%	55.88%
12	7、labor	157	50.5	81.27	51.76%	160.93%
13	8、consult	6	2.4	1.56	26.00%	65.00%

• Testing fee(测试加工费) is mainly allocated for sensor chip engineering runs (to be done in 2021)

Internal organization

Task 2 meetings

- CMOS sensors chip design meeting (weekly)
- Vertex detector overall design meeting (weekly)
- Full-day internal review meeting (every 3 month
- Institutes worked closely
- Project leader followed closely the progress

Task 2 meetings

Decem	nber 201	19	Augus	t 2020	
	30 Dec 23 Dec 09 Dec	MOST2 chip design meeting MOST2 chip design meeting MOST2 chip design meeting	July 20	17 Aug 03 Aug 020	MOST2 chip design meeting MOST2 chip design meeting
	02 Dec	MOST2 chip design meeting		24 Jul	Mechanics disucussion
Novem	nber 20 ⁻	19		13 Jul	MOST2 chip design meeting
	11 Nov 04 Nov	MOST2 chip design meeting MOST2 chip design meeting	June 2	020 29 Jun	MOST2 chip design meeting
Octobe	er 2019			22 Jun	MOST2 chip design meeting
		MOST2 ship design meeting	May 20		MOSTZ chip design meeting
	28 Oct	MOST2 chip design meeting	Iviay 20	020	
	21 Oct	MOST2 chip design meeting		18 May	y MOST2 chip design meeting
	14 001	MOOTZ Chip design meeting	April 20	020	
Septen	nber 20	19		27 Apr	MOST2 chip design meeting
	23 Sep	MOST2 chip design meeting		07 Apr	MOST2 chip design meeting
	16 Sep	MOST2 chip design meeting	March	2020	
	11 Sep	- 31 Dec MOST2 Mechanics Design Meetin	9	16 Mar	MOST2 chip design meeting
	09 Sep	MOST2 chip design meeting	Februa	rv 2021	0
	06 Sep	MOST2 Mechanics Design Meeting		., 202	-
	02 Sep	MOST2 chip design meeting		24 Feb	MOST2 chip design meeting
August	t 2019			US FED	
			Januar	y 2020)
	26 Aug	MOST2 chip design meeting		20 Jan	MOST2 chip design meeting
	19 Aug	MOST2 chip design meeting		13 Jan	MOST2 chip design meeting
	12 Aug	MOST2 chip design meeting		09 Jar	n - 31 Dec MOST2 Vertex Layout Design and O
	08 Aug	MOST2 Mechanics Design Meeting		06 Jan	MOST2 chip design meeting

Backup:外围电路模块-

高速数

Power managements in TaichuPix chip

Parameters	Value
Input voltage	<2 V
Output voltage	1.8 V
aximum output current	200 mA
Load capacitance	~200 nF
TID	> 1 Mrad.
aximum dropout voltage	0.2 V
ully integrated on-chip	
Low noise, High PSR	

Pixel architecture – parallel digital schemes

- Two parallel digital readout architectures were designed:
 - Scheme 1: ALPIDE-like: benefit from the proved digital readout in small pixel size
 - Scheme 2: FE-I3-like: benefit from the proved fast readout @40MHz BX (ATLAS)

Current DAC

- Current mirror ¢,
- Segmented architecture ¢,
 - 4 most significant bits (MSB)
 - ★ thermometer decode
 - 4 least significant bits (LSB)
 - ★ binary weighted
- Output impedance ¢,
 - Min: 104KΩ
 - Max: 43 MΩ

Voltage DAC

- Solution Current bias generation block
 - VBG: output of bandgap ~ 0.8 V
 - I_{unit} ~ 20 μA
- Negative feedback to stabilize VBG @ 0.8 V
- Solution Current mirror with resistor load
- Segmented architecture
 - 4 most significant bits (MSB): thermometer decode
 - 6 least significant bits (LSB): binary weighted

Status of TaichuPix2

- Major bugs (were tried to be) fixed
 - New IO rings were used, without DNW soft connect issues
 - DAC stability improved with higher phase margin
- **Pixel readout optimized**
 - To make larger headroom for the timing > Data latching @ 1clk -> 1.5clk
 - Address encoder pull-up added to avoid high-Z state
- **Pixel analog new attempts**
 - Smaller pixel area
 - > Possible to be 24um*25um
 - One branch with enclosed gate for better TID
- **X-chip interconnections attempts**
 - SPI buses, PLL clock reference, reset signal, are possible to be propagated by chip-chip wire bonding
 - Save some routing space for the flex cable design

外围电路逻辑

Readout architecture

٠

- 列端记录timestamp
- Trigger模式,在FIFO1 输出时丢弃不匹配数据 ,FIFO2只存储时间戳 匹配的数据

列并行读出方式:

- 512个双列并行读出以 满足dead time 的要求
 ,每列对应一个FIFO1
- 512分为4个128双列, 每128对应一个FIFO2
 - 128分为4个32双列, 32双列内部采用数据 驱动(分两级,8个一 组),32双列之间轮 询读出。轮询策略是每 块读一个数就转读下一 个块以避免数据拥塞。

Pixel digital functionality

FIFO2 数据读出

- Pixel digital's functionality was partially proved, some bugs were found
- Tested by the self-debug mode supported by the periphery logic
- The row addresses can be traversed, however, the column addresses was found
- unable to be correctly reset
- Bugs located in layout, modified in Tcpx2
- Periphery block ran reliably during the functional test

Pixel module material

Top view: active area: 12.8mm × 25.6mm dead area: 4mm × 25.6mm (only 2mm Si) Side view: 5 symmetric layer, gluing together.

Kapton(50um) Glue(Epoxy, 15um) Ladder support(carbon fiber,350um) Glue(Epoxy,15um) Kapton(50um) Al(17.8um) Glue(Epoxy, 15um) Sensor(Si, 50um)

recent discussion shows that we need add more material into flex cable

One half dead area:

Sensor(Si, 25um)
Al wire
glue(Epoxy, 7.5um)
Al(17.8um)
Kapton(50um)
Glue(Epoxy, 15um)
Ladder support(carbon fiber,175ur

- (2) Flex cable
- (3) Ladder support
- (4) Flex cable
- (5) sensor

Polyimide	
Adhesive	
Plating Al	
kapton	
Plating Al	
Adhesive	
Polyimide	

Goal for the second year

- Achieve the target in task book for the 1st and 2nd years
 - ullet
 - Completed second sensor CMOS chip prototyping \bullet
 - Completed data acquisition system for sensor testing

年度	任务	
2019	细化探测器整体支撑结构设计,绘制	1. 5
年	该结构的工程图,开始加工模块的结	所
5 月	构;对第一次 MPW 的芯片做测试以验	设 记
	证其功能,其中包括初步小剂量的辐	的i
1	照测试;完成芯片的像素阵列与外围	次任
2020	读出电路等功能模块之间的集成,并	传》
年	进行第二次多项目晶圆 (MPW) 流片加	小
4月	工;开始设计探测器单元模块的读出	25
	电子学与数据获取系统。	验i
		2.页
		芯月
		据
		MPW
		行礼

Completed preliminary engineering designs of support structure for vertex detector prototype

完成传感器芯片上 有功能模块的初步 计,并把各功能模块 设计集成,完成第二 传感器流片的设计, 感器像素单元尺寸 于或等于 25 微米 × 微米,通过仿真初步 证其抗辐照性能。

考核指标

研制出单个传感器 片的读出电子学、数 获取系统,对第一次 W 流片传感器芯片进 初步测试。

Main specs of the full size chip for high rate vertex detector

- Bunch spacing
 - CEPC Z+Higgs (240GeV): 680ns;
 - WW threshold scan (160GeV): 210ns;
 - CEPC Z pole runing (90GeV) Z: 25ns
- High Hit density
 - 2.5hits/bunch/cm² for Higgs/WW runs
 - 0.2hits/bunch/cm² for Z pole running

For Vertex	Specs	For High rate Vertex	Specs	For Pro
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pix
TID	>1Mrad	Date rate	3.84Gbps <u>triggerless</u> ~110Mbps trigger	Pov De
		Dead time	<500ns for 98% efficiency	Ch

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
					,						,									ļ
	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	í	Ĩ	Ĩ	Ĩ	Ĩ	í	1
,	r																			
ļ	1														•	•	•	•	•	j
																				ļ
															•	•	•	•	•	,
															:	•	:	:	•	j
															:	:	:	:	:	1
															•	•	•	•	•	
																				ļ
																				J
															•	•	•	•	•	1
																				ļ
	Ĩ		Ĩ	Ĩ	Ĩ	Ĩ	Ĩ		Ĩ		Ĩ	Ĩ			Ĩ		Ĩ	Ĩ	Ĩ	
																				ļ
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	j
																				ļ
																				ļ
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	j
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
																				J
	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	Ĩ	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,
																				J
	ľ	1	ľ	ľ	1	ľ	ľ	1	ľ	1	Î	ľ	ľ	1	ľ	1	ľ	ľ	1	1
																				ļ
																				ļ
•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	Ĩ		Ĩ		Ĩ	Ĩ	Ĩ		Ĩ	Ĩ	Ĩ	Ĩ	Ĩ		Ĩ		Ĩ	Ĩ	Ĩ	1
																				ļ
																				J
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1
	•	1	ŀ	•	•	•	•	•	1	•	•	•	•	•	•	•	ŀ	•	•	1
	1		1	1	1	1	1		1		1	1	1		1		1	1	1	1

[Cm]

