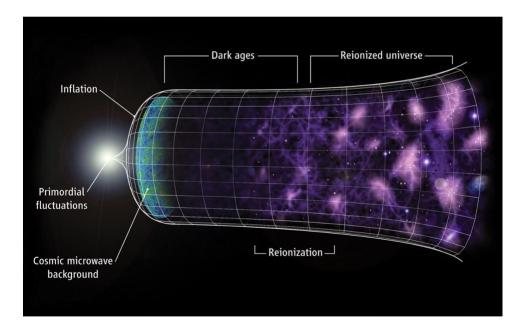


Manqi Ruan

On behalf of the CEPC Study Group


The Higgs field: one of the two SM pillars

Higgs: linked to many known unknowns of the SM

- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry

 $m_H^2 = 36,127,890,984,789,307,394,520,932,878,928,933,023$ -36,127,890,984,789,307,394,520,932,878,928,917,398 $= (125 \text{ GeV})^2 ! ?$

Most issues related to Higgs

Science at CEPC-SPPC

- Tunnel ~ 100 km
- **CEPC (90 250 GeV)**
 - Higgs factory: 1M Higgs boson
 - "Accelerators for a Higgs Factory: Linear vs. Circular"

 ING COUDINGS Absolute measurements of Higgs boson width and col

Low Energy Booster(0.4K

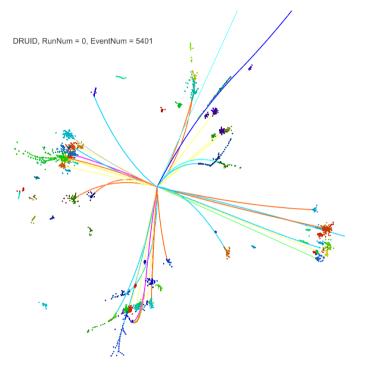
- Searching for exotic Higgs decay modes (New Physics)
- Z & W factory: ~ 1 Tera Z boson Energy Booster(4.5Km)
 - Precision test of the SM
 - Rare decay
- Flavor factory: b, c, tau and QCD studies
- **SPPC (~ 100 TeV)**
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)

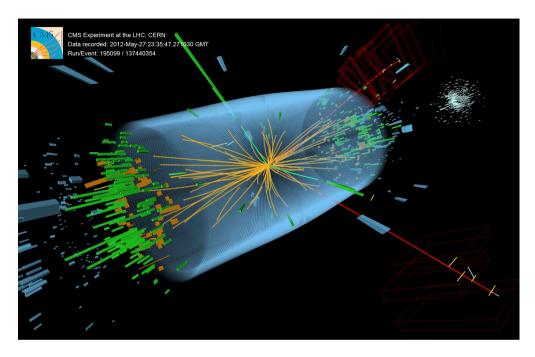
Heavy ion, e-p collision...

Report of the ICFA Beam Dynamics Workshop

FERMILAB-CONF-13-037-APC IHEP-AC-2013-001 SLAC-PUB-15370 CERN-ATS-2013-032

arXiv:1302.3318

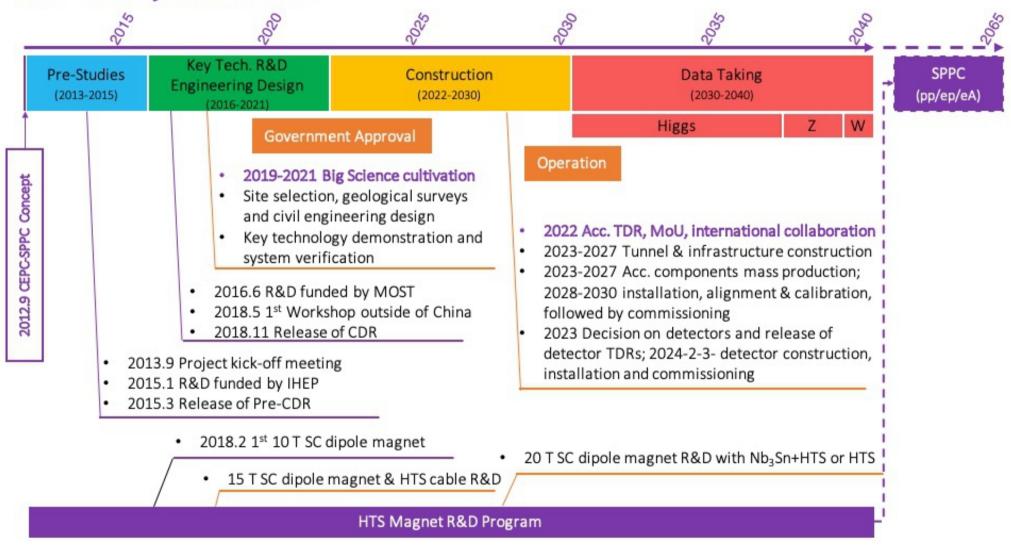

Alain Blondel¹, Alex Chao², Weiren Chou³, Jie Gao⁴, Daniel Schulte⁵ and Kaoru Yokoya6


> ¹ U. of Geneva, Geneva, Switzerland ² SLAC, Menlo Park, California, USA Fermilab, Batavia, Illinois, USA 4 IHEP, Beijing, China ⁵ CERN, Geneva, Switzerland KEK, Tsukuba, Japan

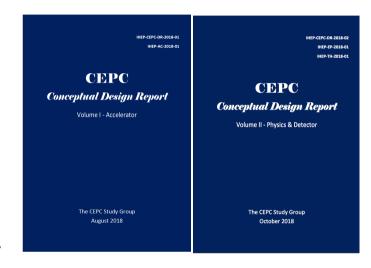
> > February 15, 2013

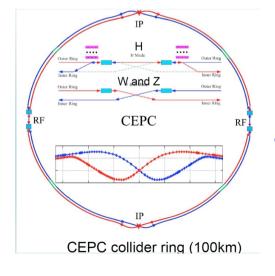
Complementary

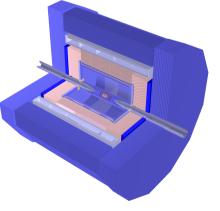
Higgs measurement at e+e- & pp

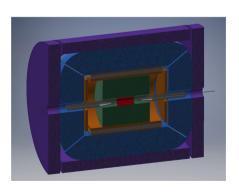


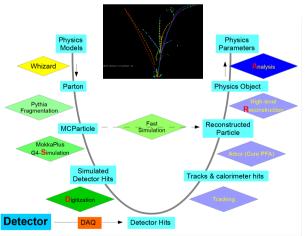
	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

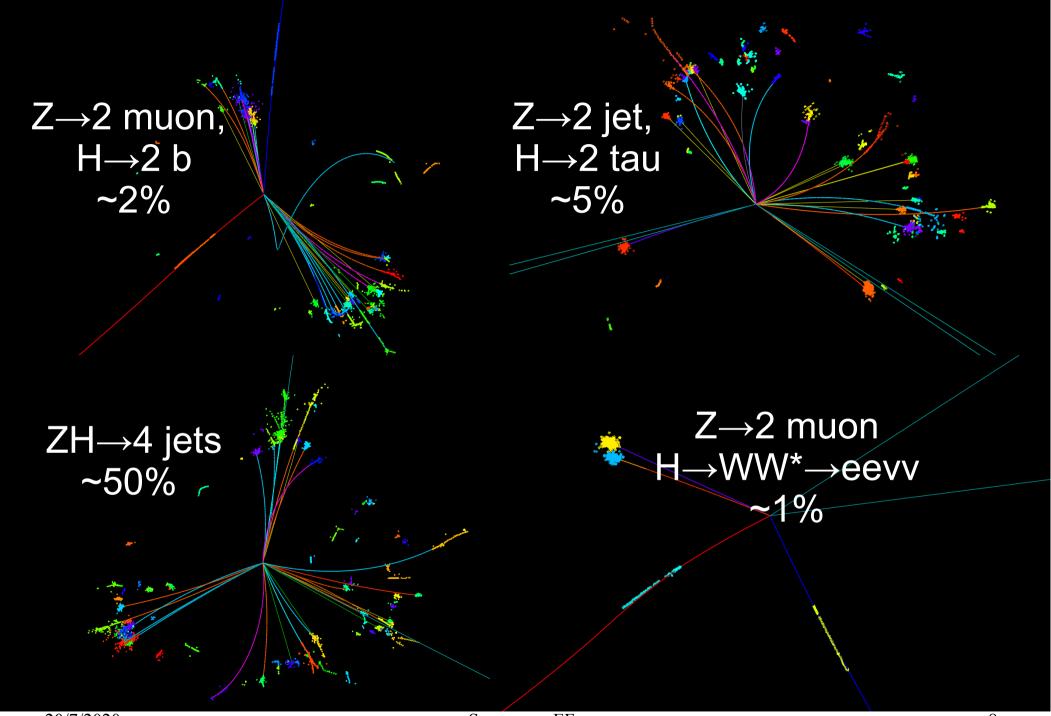

Timeline

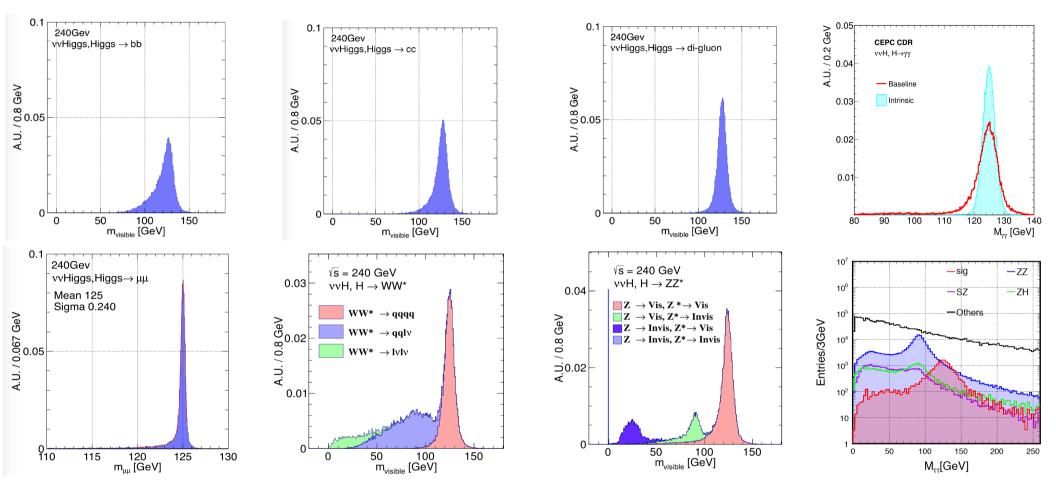

CEPC Project Timeline



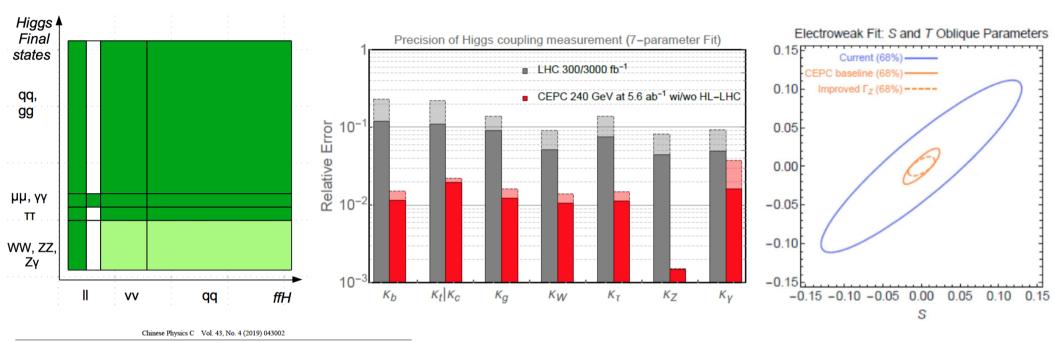

CDR @ 2018


- Baseline Accelerator, Detector, operation scenario
 - 1 Million Higgs boson in 7 years
 - 6E11 Z boson in 2 years
 - WW threshold scan: 1 year (1E7 W bosons)
- Baseline simulation tool:
 - Quantify the physics potential & comparative advantages
 - Guide the design/optimization of the facility & the detector





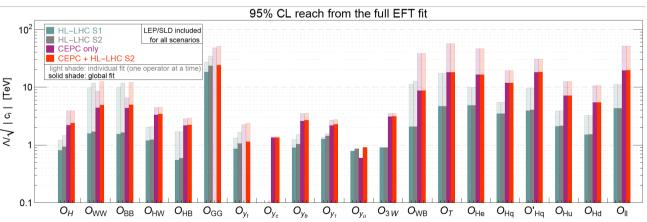
Reconstructed Higgs Signatures



Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

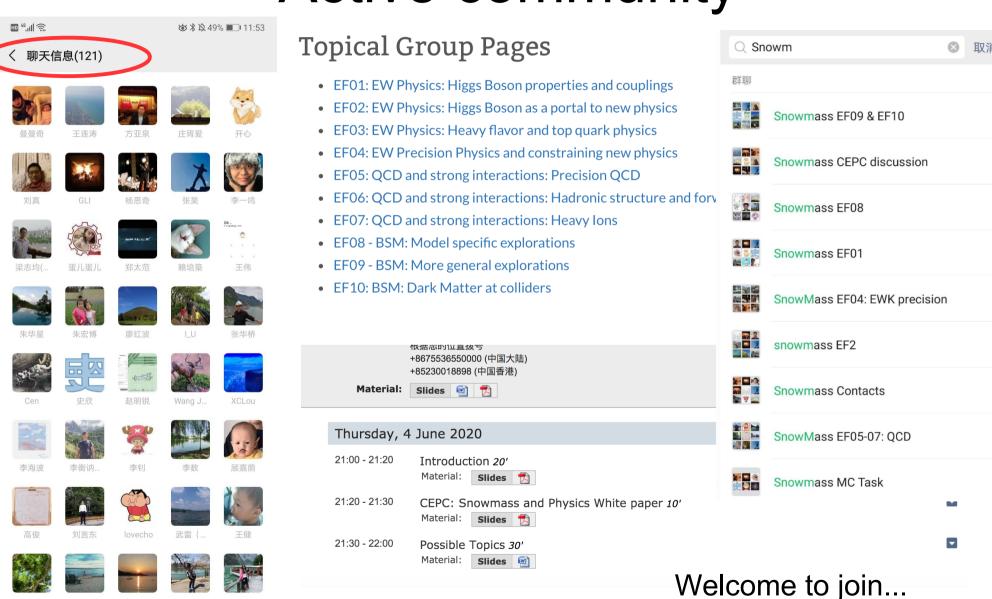
Right corner: di-tau mass distribution at qqH events using collinear approximation 20/7/2020 Snowmass EF


Quantify the physics potential

Precision Higgs physics at the CEPC*

Fenfen An(安芬芬)⁴³² Yu Bai(白羽)⁸ Chunhui Chen(陈春晖)²³ Xin Chen(陈新)⁵ Zhenxing Chen(陈振兴)³ Joao Guimaraes da Costa⁴ Zhenwei Cui(崔振厳)³ Yaquan Fang(方亚泉)^{4,6,34;1} Chengdong Fu(付成桥)⁴ Jun Gao(高俊)¹⁰ Yanyan Gao(高唐彦)¹² Yuanning Gao(高原守)³ Shaofeng Ge(葛韶锋)^{15,28} Jiayin Gu(陳嘉前)^{15,29} Fangyi Guo(郭芳彰)^{1,4} Jun Guo(郭军)¹⁰ Tao Han(禘涛)^{5,13} Shuang Han(韩爽)⁴ Hongjian He(何红蛙)^{11,10} Xianke He(何量村)¹⁰ Xiaogang He(何小刚)^{11,10,20} Jifeng Hu(胡雅峰)¹⁰ Shh-Chieh Hsu(徐士杰)²² Shan Jin(金山)⁸ Maoqiang Jing(荆茂强)⁴⁷ Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo(郭家铭)²¹ Peizhu Lai(樹培筑)²¹ Boyang Li(李博物)⁵ Congqiao Li(李聰介)³ Gang Li(李剛)^{4,43,5} Haifeng Li(李海岭)¹² Liang Li(李形)¹⁰ Shu Li(李数)^{11,10} Tong Li(李副)²² Qiang Li(李强)³ Hao Liang(荣浩)^{4,5} Zhijun Liang(梁浩与)⁴ Lio Liao(廖立波)⁴ Bo Liu(刘波)^{42,23} Jianbei Liu(刘建)⁴¹ Jianbei Liu(刘港)⁴¹ Zhen Liu(刘夷)^{42,33,64} Xinchou Lou(娄辛丑)^{4,63,64} Lianliang Ma(马连良)¹² Bruce Mellado^{17,18} Xin Mo(莫欣)⁴ Mila Pandurovic ¹⁶ Jianming Qian(钱剑明)^{24,52} Zhuoni Qian(钱卓妮)¹⁹ Nikolaos Rompotis ²² Manqi Ruan(阮曼奇)^{4,50} Alex Schuy²² Lianyou Shan(华连友)⁴ Jingyuan Shi(史静远)⁹ Xin Shi(史欣)⁴ Shufang Su(苏淑芳)²⁵ Dayong Wang(王大勇)³ Jin Wang(王衡)⁴ Liantao Wang(王连涛)^{27,7} Yifang Wang(王贻芳)^{4,5} Yuqian Wei(魏彧拳)⁴ Yue Xu(许悦)⁵ Hajiun Yang(杨海军)^{10,11} Ying Yang(杨迎)⁴ Weiming Yao(姚为民)²⁸ Dan Yu(于丹)⁴ Kaili Zhang(张凯栗)^{4,65} Zhaoru Zhang(张照茹)⁴ Mingrui Zhao(赵用秋)² Xianghu Zhao(赵祥虎)⁴ Ning Zhou(倩节)⁹

https://arxiv.org/pdf/1810.09037.pdf 20/7/2020


 $http://ias.ust.hk/program/shared_doc/2020/202001hep/workshop/exp/20200116_1038_am_Jiayin_GU.pdf$

Snowmass EF 10

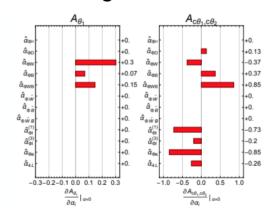
New ideas

- CDR contains the big picture
- Going forward:
 - Validate/refine critical projections
 - Covering new ground, uncovering new opportunities
- The snowmass platform is highly appreciated for the CEPC open questions' study. ~o(100) physicists, from more than 20 institutes, are actively joining these study, mainly focus on the Energy Frontier.

Active community

Snowmass EF

(...wechat is NOT a pre-request...) 12


Higgs physics (EF01 - 02)

- Status: Most of the existing Higgs analyses are rate based (SM).
- Topics:
 - Differential Higgs analysis, CP, etc;
 - Higgs recoil analysis via qqH channel;
 - Key requirements on the Tracker/VTX (Flavor Tagging);
 - Higgs mediated heavy neutrino search;
 - Go beyond k and EFT, i.e., cases in which EFT does not apply, etcs;
 - Simultaneous analysis approach, improvement using Machine Learning;

- ...

Contacts:

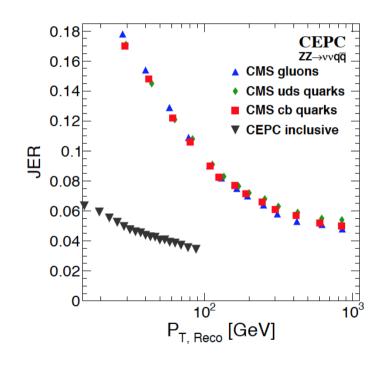
Z.Liu (Maryland), G.Li, J.Wang,Y.Fang, M. Chen(IHEP)

Example: angular variables

Craig, Gu, Liu, Wang, 1512.06877

Flavor Opportunities (EF-03)

- CEPC: A Z/flavor factories. Potential described
- Goal: To quantify
 - The comparative advantage w.r.t existing flavor factories
 - What kind to detector/performance is needed? (dP/P, dE/E, Pid, VTX...)
- Topics
 - Z and Higgs flavor changing decays
 - B hadron decays
 - Tau flavor physics
 - Rare decays
 - New hadron structure?
 - ...
- Contact: H.Zhang, H.Li (IHEP)


Particle	@ Tera- Z	@ Belle II		@ LHCb
b hadrons				
B^+	6×10^{10}	3×10^{10}	$(50 {\rm ab}^{-1} {\rm on} \Upsilon(4S))$	3×10^{13}
B^0	6×10^{10}	3×10^{10}	$(50 {\rm ab}^{-1} {\rm on} \Upsilon(4S))$	3×10^{13}
B_s	2×10^{10}	3×10^8	$(5 \mathrm{ab^{-1}} \mathrm{on} \Upsilon(5S))$	8×10^{12}
b baryons	$1 imes 10^{10}$			1×10^{13}
Λ_b	1×10^{10}			1×10^{13}
c hadrons		le le		
D^0	2×10^{11}			
D^+	6×10^{10}			
D_s^+	3×10^{10}			
$D_s^+ \\ \Lambda_c^+$	2×10^{10}			
τ^+	3×10^{10}	5×10^{10}	$(50\mathrm{ab^{-1}}\ \mathrm{on}\ \Upsilon(4S))$	

From CEPC's CDR using fragmentation ratios from Amhis et al, 17

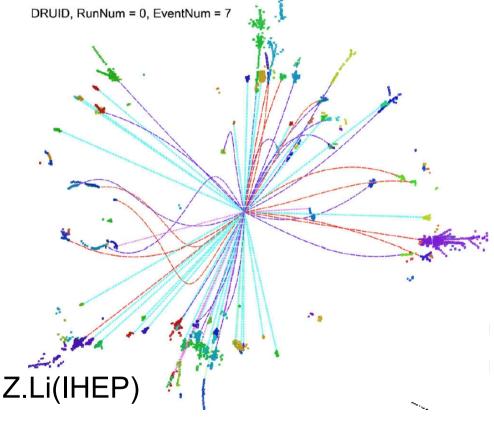
- \blacksquare Similar statistical sample of $B^{0,\pm},\,\tau$'s at Belle 2 and CEPC
- Two order of magnitude more B_s at CEPC wrt to Belle 2
- b-baryon physics possible at the CEPC
- Limited possibilities for charm physics at Belle 2

EW Precision (EF-04)

- Status: Many projections are simple extrapolation of statistic/systematic
- Goal: Refine key projections
- Topics:
 - WW production
 - TGC
 - Rb measurement
 - Afb_b measurements
 - NNLO EW correction to HZ production
 - ...
- Contact: J.Gu(Mainz), Z.Liang(IHEP)

QCD under microscope (EF05 - 07)

A High energy electron positron collider provides ideal condition to


study QCD

Topics:

- Strong coupling
- quark-gluon
- Exotic hadrons
- Color Singlet Identification
- Color reconnection

- ...

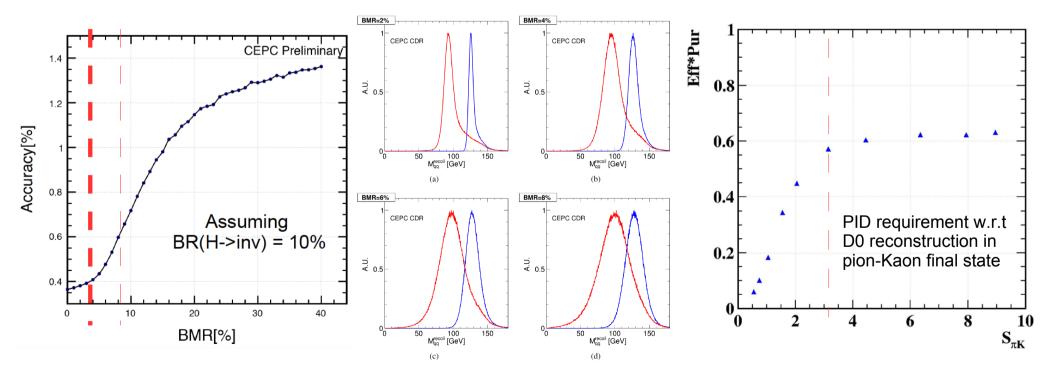
Contact: Y.Ma(PKU), H.Zhu(ZJU), Z.Li(IHEP)

BSM/Exotic (EF08-10)

- Status
 - Rich physic program, great potential
 - Most existing analysis are SM oriented...
- Goal: better quantification the corresponding potential/detector requirements
- Topics:
 - Specific benchmarks (SUSY, Composited Higgs), i.e., stau search
 - Z rare decays
 - Long Lived Particles
 - ALPs
 - DM Search via mono photon, mono V/H/Scalar, Dijet, etc
 - Higgs portal DM Study

Contact: J.Liu (PKU), H.Zhang (IHEP), X.Shi (IHEP), X.Zhuang (IHEP)

Challenges to theorists


- To fully realize the potential of the precision measurements, theory prediction needs to be significantly improved.
- Contacts: L.Yang (ZJU), Y.Jia(IHEP)

Quantity	ILC	CEPC/FCC-ee	Curi	rent intrinsic unc.	Projected unc.	
M_W [MeV]	3	0.5	4	$(\alpha^3, \alpha^2 \alpha_s)$	1	
$\sin^2 heta_{ m eff}^\ell \ [10^{-5}]$	1.3	0.6	4.5	$(\alpha^3, \alpha^2 \alpha_s)$	1.5	
Γ_Z [MeV]	1	0.1	0.5	$(\alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$	0.2 (?)	
R_b [10 ⁻⁵]	15	6	15	$(\alpha^3, \alpha^2 \alpha_s)$	7(?)	
R_l [10 ⁻³]	10??	1	5	$(\alpha^3, \alpha^2 \alpha_s)$	1.5 (?)	

Talk by S. Heinemeyer, 2019 CEPC workshop

Performance study: bridging the physics & detector

- To bridging the physics reach & detector requirements design/optimization...
- Contacts: M.Ruan, G.Li(IHEP)

Summary

- CEPC, a productive and clean Higgs/W/Z factory,
 - Boost the Higgs/EW precision by ~ 10 times w.r.t HL-LHC/current boundary
 - Huge potential on QCD, Flavor, BSM
- CDR released: Baseline defined
 - Accelerator baseline secures high productivity for Higgs, Z and W bosons.
 - Detector baseline fulfills the requirements: clear physics objects + Higgs signal
 - Alternative designs, New ideas are always welcome
- Many open questions, new ideas are identified, and community are activated.
- The Snowmass platform is highly appreciated in these studies, contributions
 & communications are highly welcome.
- ...A joint lepton collider forum?...

Backup

MC Task

- The CEPC MC Studies is supported by the Computing Center of IHEP
- The access of sample & software support is not ideal
 - Most works are operated with IHEP Cluster
 - Software releases at: http://cepcsoft.ihep.ac.cn/
- The Communication between the analyzer + pheno/theory, the MC Force, the CEPC sim team is essential:
 - What scientific problem the analyzer focus, what synergies can be made with existing/on going studies, what support she/he actually needs
- Depends on the actual demands/needs, the CEPC simulation group are happy to collaborate, to overcome the technical difficulties
 - Accessibility of Samples
 - Production of New Samples
 - Allocation on computing resource
- EF Conveners will play an important role...

Self-organization with external potential

	EF01	02	03	04	05	06	07	08	09	10
	1									
	1									1
	1	1								
		1								
		1								
			1							
			1							
			1							
				1						
				1						
					1	1	1			
								1		
				1	1				1	1
Names									1	1
								1		
								1		
								1		
								1		
			1							
				1						
	1		1							
	1	1							1	
			1		1	1				
			1							
	1			4			4			
	1	1	4	1			1			
	1	1	1				1			

Lol for Snowmass 2021. Deadline: end of August

- 1. Lot two pages. It should be an indication of a topic one would like to work on (should be **deliverable**). Snowmass conveners will use these as a way of assessing the landscape of ideas.
- After submitting the Lot, subsequent work should lead to a set of results. These can be
 publishable papers. It will also be contribution to the Snowmass. Such contribution due
 end of July 2021.

Possible topics

Topics

1. Higgs properties

Interference effect in biggs couping measurement.

Refined predictions.

Differential observables.

Higgs Self Couplings

Key requirement on Tracker & VTX (Flavor Tagging).

2. Electroweak precision

Systematics study: focusing on one or two

WW process

TGC (remark: Jet can be measured to energy resolution of 4%, direction resolution of 1%)

Afh(b) - sin^2(theta_W) (remark: Jet Charge Measurement)

3. Flavor

Rare B decay channel study, e.g. b->sll, b->cl nu and so on

Z and Higgs flavor violating decay

Physics Object at Jet and corresponding Benchmarks:

Tau in the Jet: Bc->Taux

Lepton in the Jet: B/C meson Leptonic decay

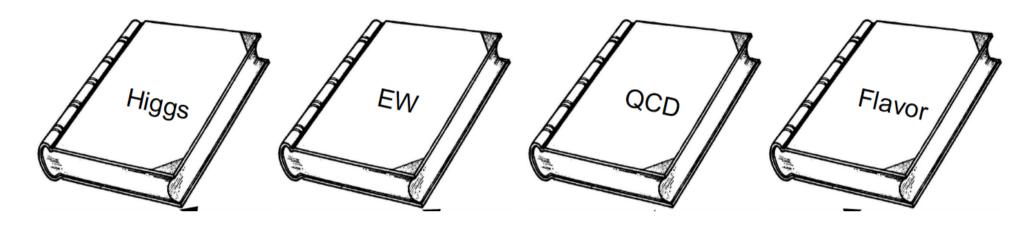
Pi-0: Z->tautau, Br(tau->X)

MET at Jet: leptonic decay of Heavy Flavor Mesons, Bs->Phi+vv

4. Precision calculation

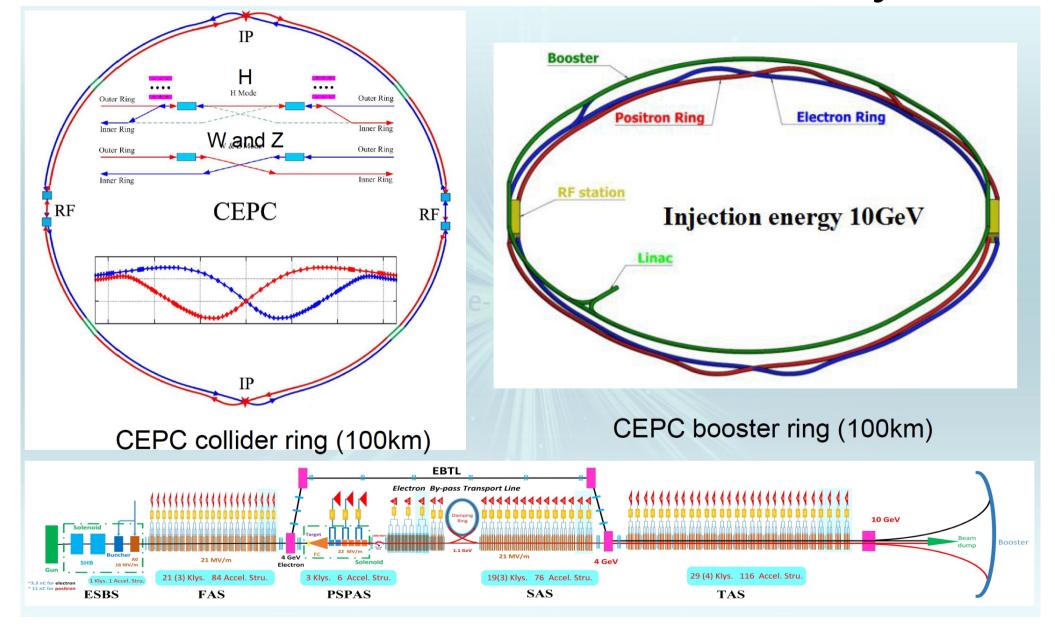
Corrections to Zh. and other EW observables, tibar. Not full calculation. Is there a doable (on a year scale) project here?

5. QCD

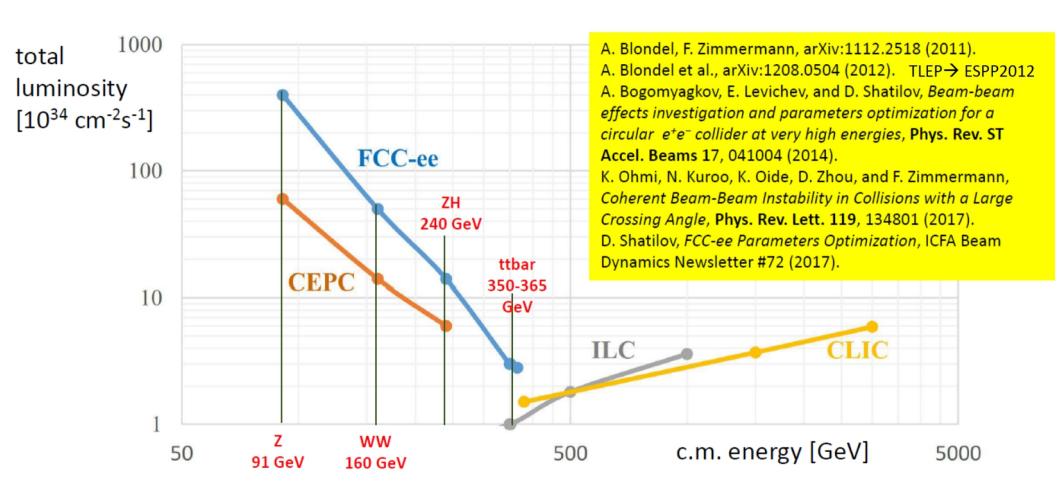

Alpha_s projection (c.f. FCC-ee).
Gluon/quark differentiation

Other event shape

Quarkonium physics?


http://ihepbox.ihep.ac.cn/ihepbox/index.php/s/x9L1ITEJaBoZac6

Ongoing physics potential studies



- To promote the physics study at TDR & to converge to the Physics White Papers
- Physics white papers:
 - Physics handbooks for new comers: PostDoc/Student
 - Official references for the physics potential
 - Guideline for future detector design/optimization
- Current Focus: Flavor

CEPC Accelerator Baseline Layout

Comparison: Linear & Circular

From A. Blondel's presentation at CEPC Oxford WS