The Light Neutralinos from GmSUGRA

Shabbar Raza

Department Physics and Astronomy Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan

in collaboration with Tianjun Li and Waqas Ahmed

◆□> ◆□> ◆注> ◆注> 注

Outline

- The Standard Model
- Grand Unification
- Low Energy Supersymmetry
- General minimal Supergravity Model(GmSUGRA
- Axion: A brief review
- Axinos: The SUSY Partner of Axion
- Preliminary Scan Results for Light Bino from GmSUGRA
- Summary

The Standard Model (SM)

- The SM is a highly successful theory and has been tested rigorously.
- The SM is based on the gauge symmetry groups of strong nuclear force, weak nuclear force and electromagnetic force i.e SU(3)_c × SU(2)_L × U(1)_Y
- $SU(3)_c \longrightarrow \text{QCD part}$
- $SU(2)_L \times U(1)_Y \longrightarrow$ Electroweak part

Shortcomings of the SM

イロン イロン イヨン イヨン 三日

3/24

- In the SM neutrinos are massless
- No dark matter (non-baryonic) candidate
- Gauge hierarchy problem $(\delta m_h^2 \propto \Lambda^2)$
- Electric charge is not fully quantized
- Non-unification of gauge couplings

Grand Unification (GUTs)

- Unification of SM gauge couplings ($M_{GUT} \sim 10^{16} \, {\rm GeV}$);
- Unification of matter/quark-lepton multiplets;
- Electric charge quantization ;
- Seesaw physics / neutrino oscillations;
- Quark-Lepton mass relations;

Low Scale (\sim TeV) Supersymmetry (SUSY):

- Arguably the most compelling extension of the Standard Model;
- Relates fermions to bosons and vice versa;
- Resolves the gauge hierarchy problem ;
- Provides cold dark matter candidate (LSP);
- Predicts new particles accessible at the LHC, and thereby enables unification of the SM gauge couplings;

The Minimal Supersymmetric Standard Model (MSSM)

	Chiral Superfields	spin 0	spin $\frac{1}{2}$	$(SU(3),SU(2),U_Y(1))$
squarks and quarks	Q	$(\tilde{u}_L \tilde{d}_L)$	$(u_L d_L)$	$(3, 2, \frac{1}{6})$
	U^c	\tilde{u}^c	u^c	$(\bar{3}, 1, -\frac{2}{3})$
	D^c	\tilde{d}^c	d^c	$(\bar{3}, 1, \frac{1}{3})$
sleptons and leptons	L	$(\tilde{\nu} \ \tilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
	E^{c}	\tilde{e}^c	e^{c}	(1, 1, 1)
Higgs and higgsinos	H_u	$(H^+_uH^0_u)$	$(\tilde{H}_u^+\tilde{H}_u^0)$	$(1, 2, \frac{1}{2})$
	H_d	$(H^0_dH^d)$	$(\tilde{H}^0_d\tilde{H}^d)$	$(1, 2, -\frac{1}{2})$

	Vector Superfields	spin $\frac{1}{2}$	spin 1	$(SU(3), SU(2), U_Y(1))$
gluinos and gluons	G	\tilde{g}	g	(8, 1, 0)
winos and W -bosons	W	$\widetilde{W}^{\pm}, \widetilde{W}^{0}$	W^{\pm}, W^0	(1, 3, 0)
bino and B -boson	В	\tilde{B}	В	(1, 1, 0)

- *h*, *H*, *A*, *H*[±]
- $R = (-1)^{3(B-L)+2S}$, R=1 (particles), R=-1 (sparticles)
- $\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}^0 + N_{13}\tilde{H}_u^0 + N_{14}\tilde{H}_d^0$, Neutralino LSP. This is prime DM candidate.

SUSY Phenomenology

• SUSY is a broken symmetry $(m_e \neq m_{\tilde{e}})$

- We have to break SUSY by introducing soft supersymmetry breaking terms (SSB)
- MSSM+SSB more than 100 parameters
- We have to relate these parameters (CMSSM,NUHM2 ..).

The EWSSUY from Genral minimal Supergravity (GmSUGRA) Model

$$\frac{1}{\alpha_2} - \frac{1}{\alpha_3} = k \left(\frac{1}{\alpha_1} - \frac{1}{\alpha_3} \right) ,$$
$$\frac{M_2}{\alpha_2} - \frac{M_3}{\alpha_3} = k \left(\frac{M_1}{\alpha_1} - \frac{M_3}{\alpha_3} \right) ,$$

With k = 5/3 and assuming gaue coupling unification at the GUT scale ($\alpha_1 = \alpha_2 = \alpha_3$),

$$M_3 = rac{5}{2} M_1 - rac{3}{2} M_2 \; .$$

The EWSSUY from Genral minimal Supergravity (GmSUGRA) Model

$$\begin{split} m_{\tilde{Q}_i}^2 &= \frac{5}{6} (m_0^U)^2 + \frac{1}{6} m_{\tilde{E}_i^c}^2 , \\ m_{\tilde{U}_i^c}^2 &= \frac{5}{3} (m_0^U)^2 - \frac{2}{3} m_{\tilde{E}_i^c}^2 , \\ m_{\tilde{D}_i^c}^2 &= \frac{5}{3} (m_0^U)^2 - \frac{2}{3} m_{\tilde{L}_i}^2 . \end{split}$$

In addition, the Higgs soft masses m_{H_u} and m_{H_d} , and the trilinear soft terms A_U , A_D and A_E can all be free parameters

Axions: Solution to Strong CP problem of QCD

- The most compelling way of resolving the strong CP problem of QCD seems to be provided by invoking the Peccei and Quinn (PQ) mechanism
- The CP-violating θ-term in the QCD Lagrangian, which is experimentally required to be excessively tiny
- One can replace the θ-term by a term involving a new fundamental pseudo-scalar field, the axion.
- This is achieved by introducing a global, chiral U(1) symmetry group, which is spontaneously broken at some high energy scale $f_a \sim 10^{11}$ GeV.

Axions: Solution to Strong CP problem of QCD, Continues

- The QCD anomaly breaks this chiral U(1) symmetry at the one-loop level, and hence the axion becomes not a true Goldstone boson but a pseudo-Goldstone boson with a tiny mass of order Λ^2_{QCD}/f_a
- As the lightest pseudo-scalar consistent with the known particle phenomenology, the axion can be very important in cosmology and astrophysical processes
- Axion physics and cosmology are very rich fields which have been thoroughly explored in the literature.

The Peccei-Quinn Mechanisim in a Nutshell

- The Peccei-Quinn symmetry is an anomalous global U(1) symmetry, broken at a high scale $f_a \sim 10^{11}$ GeV.
- After the breaking, the only surviving field in a non-supersymmetric model is the pseudo-goldstone boson of the symmetry, the axion
- Due to the anomalous nature of the symmetry, the axion couples with the gluon field as

$$L_{PQ} = \frac{\alpha_s}{8\pi f_a} a F^a_\mu \tilde{F}^\mu_a$$

- This coupling has the same form as the QCD θ term and therefore a non-vanishing θ can be reabsorbed into a and becomes a dynamical field.
- At the chiral QCD phase transition the axion acquires a mass and a potential via instanton effects and relaxes to the minimum with zero effective θ solving the strong CP problem

Axinos: The SUSY Partner of Axion

 The supermultiplet Φ consists of pseudo-scalar axion a, its fermionic partner, the axino ã, and the scalar partner saxion s

$$\Phi = rac{1}{\sqrt{2}} \left(s + i a
ight) + \sqrt{2} ilde{a} heta + F_{\Phi} heta heta.$$

where F_{Φ} is the auxiliary field

• One can write the superpotential as

$$W_{PQ} = rac{lpha_s}{4\sqrt{2}\pi f_a} \Phi W^lpha W_lpha.$$

 W^{α} is the vector multiplet containing the gluino λ^{α} and the gluon.

Axinos Models

- There are different axion models, depending on the PQ charges of the SM fields
- The KVSZ models assume the existence of heavy colored states charged under the PQ symmetry
- The DFSZ models mix the axion with the Higgs fields and give PQ charge also to SM fields
- If $\tilde{\chi}_1^0$ is not the LSP, but the Lightest Ordinary SUSY particle (LOSP), then $\tilde{\chi}_1^0 \rightarrow \tilde{a}\gamma$
- In such scenario we have axion/axino (aã) dark matter
- The neutralino abundance is converted into axino abundance with $\Omega_{\tilde{a}}h^2 = \frac{m_{\tilde{a}}}{m_{\tilde{\chi}_1^0}}\Omega_{\tilde{\chi}_1^0 h^2}$

Neutralino Decays to Axino and Gamma

• The decay width of neutralino (bino) LOSP is give as:

$$\Gamma(\chi \to \tilde{a}\gamma) = \frac{\alpha_{em}^2 C_{a\chi\gamma}^2}{128\pi^3} \frac{m_{\tilde{\chi}_1^0}^3}{(f_a/N)^2} \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{\chi}_1^0}^2}\right)^3$$

where $C_{a\chi\gamma} = (C_{a\gamma\gamma}/\cos\theta_W)Z_{11}$, with Z_{11} standing for the bino part of the lightest neutralino

- In DFSZ model, N = 8 and $C_{aYY} = 8/3$
- In KSVZ model, N = 1 and $C_{aYY} = 0, 2/3, 8/3$ for $e_Q = 0, -1/3, 2/3$ respectively

¹arXiv:hep-ph/0101009

Neutralino Lifetime for $\tilde{\chi}_1^0 \rightarrow \tilde{a}\gamma$

 $\bullet\,$ The neutralino lifetime for the process ${\tilde \chi}^0_1 \to {\tilde a} \gamma$

$$\begin{aligned} \tau \left(\tilde{\chi}_1^0 \to \tilde{a} \gamma \right) &= 0.33 \mathrm{sec} \frac{1}{C_{aYY}^2 Z_{11}^2} \left(\frac{\alpha_{em}^2}{1/128} \right)^{-2} \left(\frac{f_a/N}{10^{11} \mathrm{GeV}} \right)^2 \\ &\times \left(\frac{100 \mathrm{GeV}}{m_{\tilde{\chi}_1^0}} \right)^{-3} \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{\chi}_1^0}^2} \right)^3 \end{aligned}$$

<□> <□> <□> <□> <三> <三> <三> <三> <三> <三 16/24

Neutralino Decays to Axino and Gamma

• For large enough neutralino masses we also have $\tilde{\chi}_1^0 \rightarrow \tilde{a}Z$

$$\Gamma(\tilde{\chi}_1^0 \to \tilde{a}Z) = \frac{\alpha_{em}^2 C_{a\chi\gamma}^2}{128\pi^3} \tan^2 \theta_W \frac{m_{\tilde{\chi}_1^0}^3}{\left(f_a/N\right)^2} \times PS\left(\frac{m_Z^2}{m_{\tilde{\chi}_1^0}^2}, \frac{m_{\tilde{a}}^2}{m_{\tilde{\chi}_1^0}^2}\right)$$

where $C_{a\chi\gamma} = (C_{a\gamma\gamma}/\cos\theta_W)Z_{11}$, with Z_{11} standing for the bino part of the lightest neutralino

$$PS(x,y) = \sqrt{1 - 2(x+y) + (x-y)^2} \left[(1-y)^2 - \frac{x}{2} (1 - 6\sqrt{y} + y) - \frac{x^2}{2} \right].$$

Even at $m_{\tilde{\chi}^0_1} \gg m_Z, m_{\tilde{a}}, \, au(\tilde{\chi}^0_1 o \tilde{a}Z) \simeq 3.35 au(\tilde{\chi}^0_1 o \tilde{a}\gamma)$

- Light Neutralino Searches at CEPC
 We have two typed of Light neutralinos solutions that is solutions with correct relic density (Z-resonamce and h-resonance)² and neutralino with large density ³
- At CEPC we can probe it via

 $e^+e^- \rightarrow e^+e^- + \gamma \rightarrow \tilde{\chi}^0_1(bino) + \tilde{\chi}^0_1(bino) + \gamma$

²arXiv:1709.06371 ³arXiv:1409.3930

Light Neutralino Searches at CEPC

- The light neutralinos with large relic density may also be probed at the CEPC
- At the CEPC, the bino can be pair-produced via t- channel selecton and then bino decays into axino and photon $(\tilde{\chi}_1^0 \rightarrow \tilde{a}\gamma)$ as follows

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

19/24

• $e^+e^- \rightarrow \tilde{\chi}^0_1(bino) + \tilde{\chi}^0_1(bino) \rightarrow 2\tilde{a} + 2\gamma$

Light Neutralino from GmSUGRA (preliminary results)

Gray points satisfy REWSB and neutralino as LSP conditions. Dark green points satisfy additional spartcile mass and B-physics bounds including $m_h = 125 \pm 3 \, {\rm GeV}$ bounds.

Light Neutralino from GmSUGRA (preliminary results)

Gray points satisfy REWSB and neutralino as LSP conditions. Dark green points satisfy additional spartcile mass and B-physics bounds including $m_h = 125 \pm 3 \, {\rm GeV}$ bounds.

Light Neutralino from GmSUGRA (preliminary results)

Gray points satisfy REWSB and neutralino as LSP conditions. (Left) Blue, green and orange points satisfy spartcile mass and B-physics bounds including $m_h=125\pm3\,{\rm GeV}$ bounds respresent bino-componet, wino-component and higgsino-components respectively.(Right) Blue points show bino-type neutralino solutions and green points represent wino-dominant solutions.

	Point 1	Point 2	Point 3	Point 4
<i>m</i> 0	1387	1439	1449	1537
mõ	1280.8	1316	1358.3	1404.1
mĩic	1748.5	1851.1	1765.8	1981.3
m _{Ďc}	1790.6	1857.7	1715.7	1945.9
m _ĩ	19.8	140	912.9	475.7
m _{ëc}	472.6	192.6	756.2	132.2
M ₁	0.1588	1.822	96.81	132.6
M_2	790.9	1015	812.9	1023
M_3^-	-1186	-1517.9	-977.33	-1203
$A_t = A_b$	3944	3693	3632	4981
$A_{ au}$	241	-536.3	-403.1	-238.2
aneta	28.3	34.7	17.6	21.3
m _{Hu}	673.5	836.3	2631	3284
m _{Hd}	1193	647.3	2618	3284
mh	123	122	123	125
$m_{H,A}$	1582,1572	1394, 1385	2515,2499	3060,3040
$m_{H\pm}$	1585	1397	2516	3061
m _ë	2638	3297	2220	2676
$m_{\tilde{\chi}_{1}^{0}}$	5.84,682	<mark>8.8</mark> , 878	45.9 ,326	<mark>62</mark> ,355
$m_{\tilde{\chi}_{3}^{0}}^{1,2}$	2152, 2152	2461,2461	337, 712	363, 882
$m_{\tilde{\chi}_{1,2}^{\pm}}$	684, 881	2155, 2462	333,704	362,876
m _{ũI.R}	2625,2832	3165,3342	2374,2542	2752,2975
m _{t̃1,2}	1838, 2056	2394,2607	1173, 1731	1069 ,1811
m _{dL,R}	2627, 2880	3166, 3388	2375,2561	2753, 3016
m _{b1,2}	1957, 2500	2447,2813	1717 ,2433	1812,2777
$m_{\tilde{\nu}_{(1,2),3}}$	437, 434	549,522	978, 935	670, 532
m _{ẽL,R}	447, 574	550, 546	984 ,909	683,
$m_{\tilde{\tau}_{1,2}}$	356,618	265,627	816, 941	264 ,549
$\sigma_{SI}(pb)$	3.151×10^{-13}	3.98×10^{-13}	8.05×10 ⁻¹¹	7.33×10 ⁻¹¹
$\Omega_{CDM} h^2$	574	86	0.11	0.103

≣ ્ગેલ્ 23/24

Summary

- The prelinemary scan results for the light bino from GmSUGRA are presented
- The light binos with large relic density can decay via $\tilde{\chi}_1^0
 ightarrow \tilde{a} \gamma$
- Such binos can be probed at the CEPC via $e^+e^- \rightarrow \tilde{\chi}^0_1(bino) + \tilde{\chi}^0_1(bino) \rightarrow 2\tilde{a} + 2\gamma$
- The light binos with correct relic density may also be probed at the CEPC via

 $e^+e^- \rightarrow e^+e^- + \gamma \rightarrow \tilde{\chi}_1^0(bino) + \tilde{\chi}_1^0(bino) + \gamma$