Physics requirements and detector concepts

G. LI

CEPCSW tutorial

IHEP, 2020-09-17

Outline

- Introduction
- Physics study at CEPC
- Requirements
- CEPC soft to new CEPCSW
- Summary

Introduction: experiment procedure

Green loop is the main activity at R&D stage Yellow ellipses related with software

Introduction: comment on detector and software performances

Conclusion: if resolution doubles, at least 4-times of statistics needed to compensate it.

2020-09-17

CEPCSW Tutorial @ IHEP

Two ways to go beyond SM direct searches/precision measurements

- Higgs : mass, width, production, decay couplings, quantum numbers, ...
- W: mass, width, and TGC
- Z: Rb, Afb, ...
- Flavor physics

Physics at CEPC

- CEPC dedicated Higgs precision and probing BSM with Higgs as a portal, as well as precision electroweak test, QCD, and flavor physics – the natural expansion and tradition of BES
- ✓ CEPC is going to deliver more than 1 M Higgs events, 10⁸ WW pairs, and almost 10¹² Z bosons

Operation mode	Z factory	\boldsymbol{W} threshold scan	Higgs factory
\sqrt{s} (GeV)	91.2	158 - 172	240
$L (10^{34} cm^{-2} s^{-1})$	16-32	10	3
Running time (years)	2	1	7
Integrated Luminosity (ab ⁻¹)	8 - 16	2.6	5.6
Higgs yield	-	-	10^{6}
W yield	-	10^{7}	10^{8}
Z yield	10^{11-12}	10^{9}	10^{9}

Benchmarks for performance

Physics process	Measurands	Critical detector	Required performance
$ZH \rightarrow l^+ l^- X$	m_{H},σ_{ZH}	Trackor	$\Delta(1/P_T) = 2 \times 10^{-5} \oplus \frac{10^{-3}}{3}$
$H \to \mu^+ \mu^-$	$B(H \to \mu^+ \mu^-)$	Hacker	P(GeV)sin ² θ
$H \rightarrow b\overline{b}, c\overline{c}, gg$	$B(H \rightarrow b\overline{b}, c\overline{c}, gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{\frac{3}{2}\theta}}(\mu m)$
$H \rightarrow q \overline{q}, W^+ W^-, ZZ$	$B(H \rightarrow q\overline{q}, W^+W^-, ZZ)$	Calo	$\sigma_E^{jet} = 3 \sim 4\% \ \text{@} 100 \text{GeV}$
$H o \gamma \gamma$	$B(H \to \gamma \gamma)$	ECAL	$\frac{\Delta E}{E} = \frac{0.20}{\sqrt{E(GeV)}} \oplus 0.01$

 Many flavor studies need excellent particle identification, which also benefits to jet physics

Experiment conditions

CEPC design supposed to deliver more luminosities at all energies Constraint from machine

* double ring				
* cross angle: 33 mrad		H (240)	W (160)	Z (91)
• $L^* = 2.2 \text{ m}$ OD0 OF1 inside detector	Hit Density [hits/cm ² ·BX]	2.4	2.3	0.25
	TID [MRad/year]	0.93	2.9	3.4
Backgrounds : pair production& off-beam particles	NIEL [10^{12} 1 MeV n_{eq} /cm ² ·year]	2.1	5.5	6.2

Luminosity measurement very challenge, Stringent requirements on detector design

Physics objects: leptons, photons, jets, missing energy

Final states of ZH process

Multiplicities of typical events

- Averaged multiplicities of the charged tracks and photons ~
 30, but the maximum to 100, which carry most of the energy of an event
- ☑ Neutral hadrons ~ 10% of the energy

Leptons: tracking & ID

- Leptons extremely important for the model independent study of Higgs
- ☑ The momenta greater than 15 GeV
- High tracking efficiency, good lepton ID, and good resolution preferred

 $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-(e^+e^-) + inclusive$

_

Photons

1

- Photon energy resolution is key issue for Higgs di-photon measurement, as well as π^0 and ISR photon tagging
- Simulation shows 20%/E^{1/2} is minimum requirement for Higgs to di-photon study.

Jets

- Jet energy resolution (JER) is essential for boson reconstruction, left plots demonstrate the importance of boson mass resolution
- 4% is minimum requirement for W&Z boson separation

5

Jet ID

80% c-tagging eff. : Reject 75% b and 75% o jets

Tag efficiency vs. mis-identification

Trying more inputs with <u>energy flow</u> <u>polynomial</u> and CNN/DNN

Physics requirements

- Robustness and efficiency : record all physics events/objects in a noisy environment
- Ultimate goal: trace the whole cascade topology of a physics event, for example, jet substructure!
- Excellent resolution and efficiency to reconstruct physics objects
- Luminosity/beam energy calibration to meet physics goal
 - Luminosity: ~ 0.1% at 240 GeV and ~0.01% at 91 GeV
 - E beam: ~1 MeV at 240 GeV and ~0.1MeV at 91 GeV
- Highly hermetic coverage
- PID: lepton/jet/hadron identification with high efficiency and rejection power

CEPC PFA detector concepts

Particle flow: make use of the optimal subdetector information in reconstruction and a high granularity calorimetry system required

			(σ^2)
Charged tracks	~60%	Tracker	Negligible
Photons	~30%	Ecal	0.11 ² E _{jet}
Neutral hadron	~10%	Eca ^ı +Hcal	0.16 ² Ejet
Conclusion	Required for 30%/sqrt(E)		0.20 ² E _{jet}

CEPC: Detector Concepts

CEPC detector concepts

Three detector concepts proposed

- Silicon tracker + TPC + PFA calo used for full simulation performance study
- ☆ Full silicon tracker + PFA calo
- Silicon + Drift Chamber + DR calo

Silicon Vertex

- ☆ Three double layer pixel detector
- ☆ Rin = 16 mm
- Best single point resolution
 3 microns
- ☆ Material 0.15%X₀ per layer
- Impact parameter resolution

olution

Silicon tracker

- SIT: Silicon inner tracker
- SET: Silicon external tracker
- FTD: Forward tracking disk
- ETD: End-cap tracking disk
- See more details in Meng's talk

- Rin = 0.3 mm
- > Rout =1.8 m
- Half Z = 2.35 m
- Low material budget only 1%X0 in the central part
- Provide up to 220 points of 100 micron precision for tracking reconstruction and dE/dx for PID

Time project Chamber

Calorimeter: key of PFA concept

- ✤ Ecal baseline
 - ✤ 30 layers
 - Cell size:
 - ◆ 24 X₀
- ✤ Hcal baseline
 - ✤ 40 layers

Full Silicon tracker options

- Same calorimeters
- FST: expand SIT to TPC volume, more expensive
- FST2: inspired by SID
- Double strip layer for FST and single layer for FST2

From CEPCsoft to new CEPCSW

CEPC baseline software — http://cepcsoft.ihep.ac.cn/

CEPC software team efforts

- Using for performance study and physics simulation
- A complete set of full simulated samples at 240 GeV and
- Others at alternative energy points

CEPC Software Prototype

- EDM4Hep: official and common event data model in Kep4Hep
 - V0.1 has been released and performed in CEPCSW
 - Close to plcio

- Unified geometry service
 - Interfaced to DD4Hep
 - Used by simulation and reconstruction
 - To keep compatible during migration,
 - KalDet is kept but the underlying geometry information is from GeoSvc

Roadmap for porting Sim/Digi/Rec

- To porting Sim/Digi/Rec in parallel, two major development branches
 - One is based on the LCIO reader and only update the I/O and EDM parts in the algorithms. The output is EDM4Hep.
 - The other based on the DD4hep. All the I/O and EDM is EDM4hep.

- The Green arrows:
 - LCIO+Mokka+Marlin
- The Yellow arrows:
 - Input: LCIO
 - Output: EDM4hep
- The Red arrows:
 - EDM4hep+DD4hep

CEPCSW Silicon Tracking Flow

2020-09-17

35

Porting ECAL simulation into CEPCSW

- Status: SiW-ECAL is available in the CEPCSW
- The detector description is available for both simulation and reconstruction.
 - DD4hep version is from Chengdong.
 - Detector parameters (XML based compact file): Detector/DetCEPCv4/compact
 - Detector constructors (C++ based): Detector/DetCEPCv4/src/calorimeter/
 - SEcal05_Barrel, SEcal05_Endcaps, SEcal05_ECRing
- Detector response simulation for ECAL is done.
 - Package Simulation/DetSimSD is created for geant4 simulation.
 - CalorimeterSensDetTool: integrated with Gaudi
 - CaloSensitiveDetector: integrated with Geant4
 - DDG4SensitiveDetector: integrated with DDG4 to get VolumeID/CellID
- EDM4hep based calo hit objects and McTruth info are saved.
 - SimCalorimeterHitCollection (cellID, energy, position...)
 - CaloHitContributionCollection (Particles'PDG, energy, time, position...)

The detector could be visualized in G4

• One layer (Si+W+Si) is shown

Logical volume: EcalBarrel_alveolus_layer0

- 8 staves
- 5 modules per stave

a@2@-09-57towers per modules

One sensitive layer in a tower

CEPCSW Tutorial @ IHEP

The detector responses (barrel)

- All the information are stored in ROOT for further validation.
 - 6 collections are saved
 - EcalBarrelCollection, EcalBarrelContributionCollection
 - EcalEndcapsCollection, EcalEndcapsContributionCollection
 - EcalEndcapRingCollection, EcalEndcapRingContributionCollection

Gamma, 1GeV, theta=90deg, phi=[0.360deg], 100 events , No B-field

ID distribution (barrel)

The ID is based on VolumeID (detector) and CellID (segmentation) in DD4hep.

Problem: the ID definitions are not same for CEPCSW and Mokka.

Need further studies. See issue: <u>https://github.com/cepc/CEPCSW/issues/5</u>

CEPCSW Tutorial @ IHEP

Migration of calorimeter digitization

- Calorimeter digitization algorithm (G2CDArbor) was migrated from Marlin to CEPCSW
 - Use EDM4Hep event data model
 - Comparison of reconstructed results between Marlin and CEPCSW
 - ECAL: slight difference might be caused by different configuration parameters and version of PandoraPFA. Further check is in progress
 - HCAL: to be validated

Motivation for Silicon + Drift Chamber Tracker

- Explore a different tracker option for CEPC, our own design
- Capable for both tracking and PID (flavor, JES, jet flavor tagging ,...)
- Combine the Silicon technology (strip, CMOS) and Drift chamber technology (dE/dx, cluster counting, ...)
- Provide concrete platform to integrate smaller crystal ECAL
- Open path for better particle ID with future timing layer (LGAD) between SDT and crystal ECAL

CEPC Silicon + Drift Chamber Tracker

- Based on the baseline Silicon + TPC
- Replace TPC layers with two drift chamber layers
 SIT 3&4 at R~1.0m / larger cell size of DC than TPC

The goal and plan of this tutorial For developers, for detector study, for software

- 10:30 12:00 Software basics
 - 10:30 **Software ABC: linux, git, root, and GEANT4** *1h30'* Speaker: Xin Shi (IHEP)
- 12:00 14:00 Lunch break
- 14:00 16:00 Detector Simulation
 - 14:00 **Introduction to CEPCSW** *1h0'* Speaker: Dr. Jiaheng Zou (高能所)
 - 15:00 **DD4HEP: detector description** *1h0'* Speaker: Chengdong FU (IHEP)
- 16:00 16:30 Break
- 16:30 18:10 Detector simulation
 - 17:05 Simulation of a simple detector in CEPCSW 1h0' Speaker: Dr. Tao LIN (高能所)

Friday, 18 September 2020

- 08:00 10:20 CEPC Detector
 - 09:00 CEPC tracker system 40' Speaker: Dr. Hongbo ZHU (IHEP)
 - 09:40 **Tracking reconstruction** *40'* Speaker: Ms. Yao Zhang (Institute of high energy physics, Beijing China)
- 10:20 10:40 Break
- 10:40 12:10 CEPC detector
 - 10:45 **CEPC Calorimeters** 40' Speaker: Dr. Yong Liu (Institute of High Energy Physics)
 - 11:25
 Calorimeter reconstruction 40'

 Speaker:
 文兴方(高能所)
- 12:10 14:00 Break
- 14:00 16:00 CEPC detector: Questions & Answers

Summary

- CEPCSOFT supported preCDR & CDR studies, still supporting detector some R&D.
- The CEPC new software under developing with lots of modern software technologies: DD4hep, new tracking software, particle flow algorithms, machine learning,
- R&D of new detector concepts and the optimization with physics benchmarks is the main tasks of our software, as well as the software itself.
- Development of new detectors and its software are challenging and full of senses of achievement.