Introduction to Charged Particle Reconstruction

ZHANG Yao

Institute of High Energy Physics, Chinese Academy of Science, China zhangyao@ihep.ac.cn

Outline

- Introduction
- Traditional tracking
- Advanced tracking

Introduction to tracking

- Discovery of new particles and new physics rely on the knowledge of particles trajectory in detector
- We can only see "final-state" particles
- Our aim is determine the parameters of mother particles precesicesly

Discovery of the Ω^- in 1964

Requirements for CEPC Tracking

- Ultimate goal: trace the whole cascade topology of a physics event, for example, jet substructure!
- Requirments:
 - Efficient
 - Robustness: noisy resistant
 - · Fast

A typical CEPC event

4

CEPC detector concepts

Three detector concepts proposed

- Silicon tracker + TPC + PFA calo used for full simulation performance study
- ☆ Full silicon tracker + PFA calo
- Silicon + Drift Chamber + DR calo

Aim of Charged Particle Tracking

- Provide trigger signal
- Measurement of particles
 - 1. Sign of the charge
 - 2. Momentum
 - 3. Particle ID (mass)
 - 4. Impact parameter (lifetime tag)

Momentum measurement

• In case of homogeneous magnetic field the trajectory is given by a helix


```
total momentum: P = P_T / cos \lambda
```


Tracking detectors

- Gaseous
 - Drift chamber, straw tube, Multi-Wire Proportional Chambers, TPC, (C) GEM
- Solid state
 - Slicon strip, pixcel etc.
- Scintillating
- Each converts the ionization left by the passing of a charged particle into an electrical signal
 - charge collection
 - light collection/conversion with photo-cathode

Gaseous Tracking detectors

Straw tracker ~ 100 μm

Cathode: strips or wires (x) Anode wires (v) Cathode: strips or wires (y) MWPC ~ 300 µm

STAR TPC

Tracking Vocabulary

- "track" : a parametric representation of a charged particle's trajectory
 - usually calculated from the positions of hits in one or more particle detectors assumed to come from a single particle traversing their sensitive areas
- "hit": a signal or group of adjacent signals in a single layer of a tracking detector that originates from the passage of a single charged particle. Also often called a "cluster"
- "error" : the expected resolution of a hit.
 - can vary with the angle of incidence of the track, the number of hit elements, drift time, etc.
- "pattern recognition": the process of selecting a group of hits from different layers of a tracking detector that is geometrically consistent with originating from a single charged particle
 - the hardest part of tracking, algorithmically

Tracking Vocabulary

- "fitting" : the process of calculating the parameters of the particle's trajectory using the hit positions and errors
 - can be done iteratively or in a single pass through the hits collected by the pattern recognition algorithm
- "error matrix" : the (usually) 5x5 covariance matrix that gives the uncertainties on the track parameters
- "multiple scattering": the inevitable deviation of particle paths from a perfect curve caused by coulomb interactions with matter
- "energy loss" : ionization loss caused by interactions of the charged particle with the matter of the detector and ancillary material

Track parameterization and track model

Track parameterization/state vector

- When tracking in a solenoidal magnetic field, particle trajectories are assumed to be helical, at least locally examples:
 - 1. Charge, momentum, position:**x**= (q,px,py,pz,xb,yb,zb)
 - 2. track circle parameter : $x = (d0, \phi0, q/pt, z0, \theta)$
 - where

q is the charge of particle and pt is the transverse momentum

- ϕ_0 is the direction of the track at the closest point to (0,0)
- d_0 is the distance of closest approach to (x = 0, y = 0)
- $\boldsymbol{\theta}$ is the polar angle measured up from beam axis
- z_0 is the z position of the track when it is at its distance of closest approach to (x = 0, y = 0)
- b) $e_x \phi$ p_T e_z e_y e_y

• Track model

- the solution to the equation of motion
- describes how the state vector at a given surface depends on the state vector on a different surface
 - •example: Runge-Kutta (numerical integration) : treat non-uniformity of magnetic field

$$oldsymbol{x}_k = oldsymbol{f}_{k|i}(oldsymbol{x}_i)$$

```
track propagator
```

Tracking tasks

- 1. Track finding (pattern recognition)
 - classification of hit measurement into subset which original from same track
 - reject the noise hits and background hits
- 2. Track fitting
 - optimally estimate of track parameters from the set of hit position and give the covariance matrix of the estimate
- Final classification may be deferred to the fitting. The boundary between track finding and track fitting is therefore fuzzy.

Track Finding

- Local track finding
 - seed->compute rode->pick up hits ->confirm track candidate
 - examples:
 - Road method
 - Combinatorial Kalman filter
 - Cellular automaton
- Global track finding
 - Define a suitable feature space->find clusters in the feature space
 - examples:
 - Histogramming
 - Template matching
 - Hough transform
 - Apollonius circle
 - Advanced tracking
 - Machine learning/deep learning

Conformal transform & Histogramming

• Convert a circle pass through origin into a line

Hough transformation

Points on a line in real space → lines or curves focus in Hough space
Let each feature vote for all the models that are compatible with it

Hough transform example

Apollonius circle (2D/3D)

• Triplets fitting on GPUs

Template matching

- Prepare template dictionary
 - 1. Gather the patterns that track leaves in the detector (superlayers)
 - 2. Make a dictionary of track segment pattern template
- Match hit pattern in the dictionary
 - 1. Map wire neighbors into the hits combine group
 - 2. Looks for patterns of hits group and calls the valid ones segments
 - 3. Link segments into tracks according to their parameter

hits in detector

hit neighbors in superlayer

One segment pattern

(3,5) (3,0)(3,3)(3,2)(3,1)(3,4)(2,5) (2,4) (2,3) (2,2) (1,0)(1,1)(1,5)(1,2)()(0,1) (0,5)(0,0)(0,3)(0,2)(0,4)ise Yao ZHANG, CEPC tutorial

4-hits pattern dictionary

each 8-binary digit indicate a track segment pattern

Cellular automaton

 The cellular automaton is faster and more robust algorithm which employs a sequential approach for the optimization effectively taking the discrete and parallel nature of the optimization problem into account.

Fig. 3. A simple illustration of the segment model: segments connect hits across one or two layers.

Let the performance index of such an optimization problem be

$$J(U) = N - \gamma \sum_{i=1}^{N-1} \frac{\varphi(s_{i+1}, s_i)}{z_{i+1,r} - z_{i,l}} \to \max_U$$
(1)

I. Abt et al. / Nuclear Instruments and Methods in Physics Research A 489 (2002) 389–405

Track fitting

- Global least square fit
 - use helix as track model
 - neglecting the inhomogeneous magnetic field and material effects
 - Fits parameters on a single predefined surface
 - Minimize χ^2
 - $\chi^2 = \sum_{i=1}^n \left(\frac{m-f(a)}{\sigma^2}\right)^2$, where *m* is the measurement and *f(a)* is the fitted value

Kalman filter fitting

- Iterative Least Square estimation of the state vectors in all measurement layers (or even material layers).
- Two steps are repeated:
 - Prediction: extrapolate the state to the next layer, add up multiple scattering, subtract energy loss
 - Update: combine the predicted state with the current measurement
- Need a good initial state (seed)

Kalman filter fitting

(c) Forward (cyan) and backward (magenta) fit with covariances of the state updates.

NIM A(262)1987 444-450

Material effects treated in fitting

- For minimum ionizing particles, two principal material effects:
 - Multiple Coulomb scattering (MS) (in thin material)
 - scattering angle that treated in Gaussian approximation which rms is:

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

• Energy Loss (dE/dx)

•
$$\operatorname{tr}\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$
 he-Bloch formula

- For electrons (or very high energy muons), an additional effect:
 - **Bremsstrahlung**(emission of photons in the electric field of the nucleus)

$$-\left\langle \frac{dE}{dx} \right\rangle_{Brems} = \frac{E}{X_0}$$

 X_0 is the radiation length in [g/cm²]: After passage of one X_0 electron has lost all but (1/e) th of its energy

Combinatorial Kalman Filter(CKF)

- Start from a track seed
- Extrapolated trajectory from layer to next layer by Kalman filter procedure, add hits while fitting
- Turns Kalman filter to a pattern recognition procedure
- Shortcoming
 - Combinatorial explosion and time consuming
 - Large number of duplicated and overlapping tracks
 - Leads to ambiguities (mutually exclusive track candidates that have too many hits in common)

Machine learning on HEP

- Cover many topics
 - Physics Analysis, DQM, Fast simulation, Trigger/Reconstruction, Event and particle ID, Flavor Tagging, Physics analysis, Computing/Data Management, etc.
 - Become new track or section in HEP software conference
 - Growing contributions
- Parallel
- Deep learning library
 - TMVA since 2016, development ongoing
 - Tensorflow, Keras, Pytorch

- Machine Learning
- Physics Analysis
- Data Preservation
- 47 presentations
- 14 posters

70% of contributions related to machine learning

•

End-to-End Learning

Can we fully exploit the detectors:

Raw data, low-level variables

Some Deep Learning Inspirations

Image Segmentation using R-CNN

Online object tracking using **RNN**

Anton Milan et al, https://arxiv.org/pdf/1604.03635.pdf

Identify background from signal hits ---Machine learning with Boosted Decision Tree

neighbor features

Neighbourd weel 6801 Outsur

000

decision tree

Gradient boost decision tree

Decision Tree *i*: $h_i(\mathbf{f}) = +1 \text{ or } -1$ GBDT: $y_{\text{Grad}}(\mathbf{f}, \mathbf{b}) = \sum_{i=1}^{N_{\text{trees}}} b_i h_i(\mathbf{f})$

Loss Function: $F(y_{\text{Grad}}, y) = -2 [y \cdot y_{\text{Grad}} + \ln (1 + e^{y_{\text{Grad}}})]$

• Machine learning to train the boosted decision tree

Signa

Backgroun

Track (pre)-fitting with RNN+LSTMs

- Expected to do track building(substitution of track finding) and track parameter estimation(substitution of Kalman Filter)
 - use LSTM and RNN to estimate track position r(t), $\phi(t)$, z(t)

$$\vec{r}_{0}, \vec{r}_{1}, \dots, \vec{r}_{N-1} \rightarrow \text{LSTM} \rightarrow \text{FC} \rightarrow (\hat{r}_{1}, \Sigma_{1}), (\hat{r}_{2}, \Sigma_{2}), \dots, (\hat{r}_{N}, \Sigma_{N}),$$
$$\vec{r} = (r, \phi, z) \qquad \qquad \hat{\vec{r}} = (\hat{\phi}, \hat{z}) \qquad \Sigma = \begin{pmatrix} \sigma_{\phi}^{2} & \sigma_{\phi z}^{2} \\ \sigma_{\phi z}^{2} & \sigma_{z}^{2} \end{pmatrix}$$

Figure 8. Illustration of a graph representation of track hit data. Hits are connected on adjacent layers if they are compatible according to some criteria.

https://doi.org/10.1051/epjconf/201715000003

Figure 11. Example hit classification graph for a track. The colors indicate the model score, with red indicating 1 (correct hit) and blue indicating 0.

GPU tracking to scan track parameter

Track parameter seed is used for each core to calc. distance between track and hits

Track Finding: Scanning the Seeds (1)

Summary

- Traditional track reconstruction method have been introduced
- Machine learning may be a promising method to deal with complicate classification problems for high energy particle reconstruction

References

- Mike Hildreth Charged Particle Tracking
- Pattern recognition and event reconstruction in particle physics experiments, R Mankel, 2004
- R. Fruhwirth, NIM A262(1987)
- R. Fruhwirth, Comp.Phys.Comm. 120, 197
- R. Mankel, Kalman Filter Techniques