
Geant4 v9.4

Geant4 Geometry

Slides kindly prepared by Makoto Asai (SLAC)
and slightly reorganized by Sebastien Incerti (CNRS)

KIT Tutorial, October 25-26, 2011, Karlsruhe

http://geant4.org

Geant4 v9.4

Introduction

Detector geometry
•  Three conceptual layers

–  G4VSolid -- shape, size

–  G4LogicalVolume -- daughter physical volumes,

 material, sensitivity, user limits, magnetic field,
 visualization attributes, etc.

–  G4VPhysicalVolume -- position, rotation

3

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume
has a

Derives
from

Define detector geometry

•  Basic strategy

G4VSolid* pBoxSolid =

 new G4Box(“aBoxSolid”,

 1.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =

 new G4LogicalVolume(pBoxSolid,

 pBoxMaterial, “aBoxLog”, 0, 0, 0);

G4VPhysicalVolume* aBoxPhys =

 new G4PVPlacement(pRotation,

 G4ThreeVector(posX, posY, posZ),

 pBoxLog, “aBoxPhys”, pMotherLog,

 0, copyNo);

•  A volume is placed in its mother volume. Position and rotation of the daughter volume is
described with respect to the local coordinate system of the mother volume. The origin of
mother volume’s local coordinate system is at the center of the mother volume.

–  Daughter volume cannot protrude from mother volume.
Geometry I - M.Asai (SLAC) 4

Solid : shape and size Logical volume :
+ material, sensitivity, etc.

Physical volume :
 + rotation and position

Geometrical hierarchy
•  One logical volume can be placed more than

once. One or more volumes can be placed in a
mother volume.

•  Note that the mother-daughter relationship is an
information of G4LogicalVolume.
–  If the mother volume is placed more than

once, all daughters are by definition to
appear in all of mother physical volumes.

•  The world volume must be a unique physical
volume which fully contains all the other
volumes.
–  The world volume defines the global

coordinate system. The origin of the global
coordinate system is at the center of the
world volume.

–  Position of a track is given with respect to
the global coordinate system.

5

Geant4 v9.4

G4VUserDetectorConstruction

User classes
•  main()

–  Geant4 does not provide main().
Note : classes written in red are mandatory.

•  Initialization classes
–  Use G4RunManager::SetUserInitialization() to define in main()
–  Invoked at the initialization

•  G4VUserDetectorConstruction
•  G4VUserPhysicsList

•  Action classes
–  Use G4RunManager::SetUserAction() to define in main()
–  Invoked during an event loop

•  G4VUserPrimaryGeneratorAction
•  G4UserRunAction
•  G4UserEventAction
•  G4UserStackingAction
•  G4UserTrackingAction
•  G4UserSteppingAction

7

G4VUserDetectorConstruction

8

Construct() should return the pointer of the world physical volume.
The world physical volume represents all of your geometry setup.

Describe your detector
•  Derive your own concrete class from G4VUserDetectorConstruction abstract

base class.

•  Implement the method Construct()
1)  Construct all necessary materials
2)  Define shapes/solids

3)  Define logical volumes

4)  Place volumes of your detector geometry

5)  Associate (magnetic) field to geometry (optional)

6)  Instantiate sensitive detectors / scorers and set them to corresponding volumes
(optional)

7)  Define visualization attributes for the detector elements (optional)

8)  Define regions (optional)

•  Set your construction class to G4RunManager

•  It is suggested to modularize Construct() method w.r.t. each component or sub-
detector for easier maintenance of your code.

9

Geant4 v9.4

1) Shape of volume

G4VSolid

•  Abstract class. All solids in Geant4
are derived from it.

•  It defines but does not implement all
functions required to:

–  compute distances between the
shape and a given point

–  check whether a point is inside
the shape

–  compute the extent of the shape

–  compute the surface normal to
the shape at a given point

•  User can create his/her own solid
class.

11

Solids

12

  Solids defined in Geant4:

  CSG (Constructed Solid Geometry) solids

  G4Box, G4Tubs, G4Cons, G4Trd, …

  Analogous to simple GEANT3 CSG solids

  Specific solids (CSG like)

  G4Polycone, G4Polyhedra, G4Hype, …

  BREP (Boundary REPresented) solids

  G4BREPSolidPolycone, G4BSplineSurface, …

  Any order surface

  Boolean solids

  G4UnionSolid, G4SubtractionSolid, …

CSG: G4Box, G4Tubs

G4Box(const G4String &pname, // name

 G4double half_x, // X half size

 G4double half_y, // Y half size

 G4double half_z); // Z half size

G4Tubs(const G4String &pname, // name

 G4double pRmin, // inner radius

 G4double pRmax, // outer radius

 G4double pDz, // Z half length

 G4double pSphi, // starting Phi

 G4double pDphi); // segment angle

13

Other CSG solids

14

G4Cons

G4Para
(parallelepiped)

G4Trd

G4Trap

G4Sphere

G4Torus

Consult Section 4.1.2 of Geant4
Application Developers Guide for all
available shapes.	G4Orb

(full solid sphere)

Specific CSG Solids: G4Polycone

G4Polycone(const G4String& pName,

 G4double phiStart,

 G4double phiTotal,

 G4int numRZ,

 const G4double r[],

 const G4double z[]);

•  numRZ - numbers of corners in the r,z space

•  r, z - coordinates of corners

 	

15

Other Specific CSG solids

16

G4Polyhedra

G4EllipticalTube G4Ellipsoid

G4EllipticalCone

G4Hype G4Tet
(tetrahedra)

G4TwistedBox G4TwistedTrd G4TwistedTrap

G4TwistedTubs

Consult Section 4.1.2 of Geant4 Application
Developers Guide for all available shapes.	

BREP Solids

•  BREP = Boundary REPresented Solid

•  Listing all its surfaces specifies a solid

–  e.g. 6 planes for a cube

•  Surfaces can be

–  planar, 2nd or higher order

•  elementary BREPS

–  Splines, B-Splines,

 NURBS (Non-Uniform B-Splines)

•  advanced BREPS

•  Few elementary BREPS pre-defined

–  box, cons, tubs, sphere, torus, polycone,
polyhedra

•  Advanced BREPS built through CAD systems

17

Boolean Solids

18

  Solids can be combined using boolean operations:
  G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid

  Requires: 2 solids, 1 boolean operation, and an (optional) transformation for
the 2nd solid

  2nd solid is positioned relative to the coordinate system of the 1st solid
  Result of boolean operation becomes a solid. Thus the third solid can be

combined to the resulting solid of first operation.

  Solids to be combined can be either CSG or other Boolean solids.
  Note: tracking cost for the navigation in a complex Boolean solid is proportional to

the number of constituent CSG solids

G4UnionSolid G4IntersectionSolid G4SubtractionSolid

Boolean solid

19

Boolean Solids - example

20

G4VSolid* box = new G4Box(“Box",50*cm,60*cm,40*cm);

G4VSolid* cylinder

 = new G4Tubs(“Cylinder”,0.,50.*cm,50.*cm,0.,2*M_PI*rad);

G4VSolid* union

 = new G4UnionSolid("Box+Cylinder", box, cylinder);

G4VSolid* subtract

 = new G4SubtractionSolid("Box-Cylinder", box, cylinder,

 0, G4ThreeVector(30.*cm,0.,0.));

G4RotationMatrix* rm = new G4RotationMatrix();

rm->RotateX(30.*deg);

G4VSolid* intersect

 = new G4IntersectionSolid("Box&&Cylinder",

 box, cylinder, rm, G4ThreeVector(0.,0.,0.));
  The origin and the coordinates of the combined solid are the same as those of the first

solid.

Tessellated solids
•  G4TessellatedSolid (since 8.1)

–  Generic solid defined by a number of facets (G4VFacet)
•  Facets can be triangular (G4TriangularFacet) or quadrangular

(G4QuadrangularFacet)
–  Constructs especially important for conversion of complex

geometrical shapes imported from CAD systems
–  But can also be explicitly defined:

•  By providing the vertices of the facets in anti-clock wise order, in
absolute or relative reference frame

–  GDML binding

21

Geant4 v9.4

A CAD imported assembly
with tessellated solids - release 8.1

Geant4 v9.4

2) Logical Volume

G4LogicalVolume
G4LogicalVolume(G4VSolid* pSolid,

 G4Material* pMaterial,

 const G4String &name,

 G4FieldManager* pFieldMgr=0,

 G4VSensitiveDetector* pSDetector=0,

 G4UserLimits* pULimits=0);
•  Contains all information of volume except position and rotation

–  Shape and dimension (G4VSolid)
–  Material, sensitivity, visualization attributes
–  Position of daughter volumes
–  Magnetic field, User limits, Region

•  Physical volumes of same type can share a common logical volume object.
•  The pointers to solid must NOT be null.
•  The pointers to material must NOT be null for tracking geometry.
•  It is not meant to act as a base class.

24

Computing volumes and weights
•  Geometrical volume of a generic solid or boolean composition can be

computed from the solid volume:

 G4double GetCubicVolume();

–  Exact volume is determinatively calculated for most of CSG solids, while
estimation based on Monte Carlo integration is given for other solids.

•  Overall weight of a geometry setup (sub-geometry) can be computed from the

logical volume:

 G4double GetMass(G4bool forced=false,

 G4bool propagate=true, G4Material* pMaterial=0);

–  The computation may require a considerable amount of time, depending

on the complexity of the geometry.

–  The return value is cached and reused until forced=true.

–  Daughter volumes will be neglected if propagate=false.

25

Geant4 v9.4

Logical volume
 Region

Geometry III - M.Asai (SLAC) 27

Region

•  A region may have its unique
–  Production thresholds (cuts)

•  If a region in the mass geometry does not have its own production
thresholds, those of the default region are used (i.e., may not be those of
the parent region).

–  User limits
•  Artificial limits affecting to the tracking, e.g. max step length, max

number of steps, min kinetic energy left, etc.
•  You can set user limits directly to logical volume as well. If both logical

volume and associated region have user limits, those of logical volume
wins.

–  User region information
•  E.g. to implement a fast Boolean method to identify the nature of the

region.
–  Fast simulation manager
–  Regional user stepping action
–  Field manager

•  Please note :
–  World logical volume is recognized as the default region. User is not allowed

to define a region to the world logical volume.

28

World Volume - Default Region

Root logical volume
•  A logical volume can be a region. More

than one logical volumes may belong to
a region.

•  A region is a part of the geometrical
hierarchy, i.e. a set of geometry
volumes, typically of a sub-system.

•  A logical volume becomes a root logical
volume once a region is assigned to it.
–  All daughter volumes belonging to

the root logical volume share the
same region, unless a daughter
volume itself belongs to another
root.

•  Important restriction :
–  No logical volume can be shared by

more than one regions, regardless
of root volume or not.

Root logical - Region A

Root logical -
Region B

29

G4Region

•  A region is instantiated and defined by

G4Region* aRegion = new G4Region(“region_name”);

aRegion->AddRootLogicalVolume(aLogicalVolume);

–  Region propagates down to all geometrical hierarchy until the bottom or
another root logical volume.

•  Production thresholds (cuts) can be assigned to a region by

G4Region* aRegion

 = G4RegionStore::GetInstance()->GetRegion(“region_name”);

G4ProductionCuts* cuts = new G4ProductionCuts;

cuts->SetProductionCut(cutValue);

aRegion->SetProductionCuts(cuts);

G4Region class
•  G4Region class may take following quantities:

–  void SetProductionCuts(G4ProductionCuts* cut);

–  void SetUserInformation(G4VUserRegionInformation* uri);

–  void SetUserLimits(G4UserLimits* ul);

–  void SetFastSimulationManager(G4FastSimulationManager* fsm);

–  void SetRegionalSteppingAction(G4UserSteppingAction* rusa);

–  void SetFieldManager(G4FieldManager* fm);

•  Please note:

–  If any of the above properties are not set for a region, properties of the world

volume (i.e. default region) are used. Properties of mother region do not

propagate to daughter region.

30

Geant4 v9.4

3) Physical volume

Physical Volumes
•  Placement volume : it is one positioned volume

–  One physical volume object represents one “real” volume.

•  Repeated volume : a volume placed many times

–  One physical volume object represents any number of
“real” volumes.

–  reduces use of memory.

–  Parameterised

•  repetition w.r.t. copy number

–  Replica and Division

•  simple repetition along one axis

•  A mother volume can contain either

–  many placement volumes

–  or, one repeated volume

32

repeated

placement

Physical volume
•  G4PVPlacement 1 Placement = One Placement Volume

–  A volume instance positioned once in its mother volume
•  G4PVParameterised 1 Parameterized = Many Repeated Volumes

–  Parameterized by the copy number
•  Shape, size, material, sensitivity, vis attributes, position and rotation can

be parameterized by the copy number.
•  You have to implement a concrete class of G4VPVParameterisation.

–  Reduction of memory consumption
–  Currently: parameterization can be used only for volumes that either

a) have no further daughters, or
b) are identical in size & shape (so that grand-daughters are safely fit inside).

–  By implementing G4PVNestedParameterisation instead of
G4VPVParameterisation, material, sensitivity and vis attributes can be
parameterized by the copy numbers of ancestors.

33

Physical volume
•  G4PVReplica 1 Replica = Many Repeated Volumes

–  Daughters of same shape are aligned along one axis
–  Daughters fill the mother completely without gap in between.

•  G4PVDivision 1 Division = Many Repeated Volumes
–  Daughters of same shape are aligned along one axis and fill the mother.
–  There can be gaps between mother wall and outmost daughters.
–  No gap in between daughters.

•  G4ReflectionFactory 1 Placement = a pair of Placement volumes
–  generating placements of a volume and its reflected volume
–  Useful typically for end-cap calorimeter

•  G4AssemblyVolume 1 Placement = a set of Placement volumes
–  Position a group of volumes

34

Geant4 v9.4

Physical volume
 1) G4PVPlacement

G4PVPlacement(G4RotationMatrix* pRot, // rotation of mother frame

 const G4ThreeVector &tlate, // position in mother frame

 G4LogicalVolume *pDaughterLogical,

 const G4String &pName,

 G4LogicalVolume *pMotherLogical,

 G4bool pMany, // ‘true’ is not supported yet…

 G4int pCopyNo, // unique arbitrary integer

 G4bool pSurfChk=false); // optional boundary check

•  Single volume positioned relatively to the mother volume.

Geometry II - M.Asai (SLAC) 36

Mother volume

rotation

translation in

mother frame

G4PVPlacement

Geant4 v9.4

Physical volume
 2) G4PVParameterised

G4PVParameterised

G4PVParameterised(const G4String& pName,

 G4LogicalVolume* pLogical,

 G4LogicalVolume* pMother,

 const EAxis pAxis,

 const G4int nReplicas,

 G4VPVParameterisation* pParam

 G4bool pSurfChk=false);

•  Replicates the volume nReplicas times using the parameterization
pParam, within the mother volume pMother

•  pAxis is a “suggestion” to the navigator along which Cartesian axis
replication of parameterized volumes dominates.

–  kXAxis, kYAxis, kZAxis : one-dimensional optimization

–  kUndefined : three-dimensional optimization
38

Parameterized Physical Volumes

•  User should implement a class derived from G4VPVParameterisation abstract
base class and define the following as a function of copy number
–  where it is positioned (transformation, rotation)

•  Optional:
–  the size of the solid (dimensions)
–  the type of the solid, material, sensitivity, vis attributes

•  All daughters must be fully contained in the mother.
•  Daughters should not overlap to each other.
•  Limitations:

–  Applies to simple CSG solids only
–  Granddaughter volumes allowed only for special cases
–  Consider parameterised volumes as “leaf” volumes

•  Typical use-cases
–  Complex detectors

•  with large repetition of volumes, regular or irregular
–  Medical applications

•  the material in animal tissue is measured as cubes with varying
material	 Geometry II - M.Asai (SLAC) 39

0
1

2

3

5
6

Geant4 v9.4

Geometry checking tools

41

Debugging geometries

•  An protruding volume is a contained daughter volume which actually protrudes from its

mother volume.

•  Volumes are also often positioned in a same volume with the intent of not provoking

intersections between themselves. When volumes in a common mother actually

intersect themselves they are defined as overlapping.

•  Geant4 does not allow for malformed geometries, neither protruding nor overlapping.

–  The behavior of navigation is unpredictable for such cases.

•  The problem of detecting overlaps between volumes is bounded by the complexity of

the solid models description.

•  Utilities are provided for detecting wrong positioning

–  Optional checks at construction

–  Kernel run-time commands

–  Graphical tools (DAVID, OLAP)

protruding overlapping

42

Optional checks at construction
•  Constructors of G4PVPlacement and G4PVParameterised have an optional

argument “pSurfChk”.
G4PVPlacement(G4RotationMatrix* pRot,

const G4ThreeVector &tlate,
G4LogicalVolume *pDaughterLogical,
const G4String &pName,
G4LogicalVolume *pMotherLogical,
G4bool pMany, G4int pCopyNo,
G4bool pSurfChk=false);

•  If this flag is true, overlap check is done at the construction.
–  Some number of points are randomly sampled on the surface of creating

volume.
–  Each of these points are examined

•  If it is outside of the mother volume, or
•  If it is inside of already existing other volumes in the same mother

volume.
•  This check requires lots of CPU time, but it is worth to try at least once when you

implement your geometry of some complexity.

43

Debugging run-time commands

•  Built-in run-time commands to activate verification tests for the user geometry
are defined
–  to start verification of geometry for overlapping regions based on a

standard grid setup, limited to the first depth level
geometry/test/run or geometry/test/grid_test

–  applies the grid test to all depth levels (may require lots of CPU time!)
geometry/test/recursive_test

–  shoots lines according to a cylindrical pattern
geometry/test/cylinder_test

–  to shoot a line along a specified direction and position
geometry/test/line_test

–  to specify position for the line_test
geometry/test/position

–  to specify direction for the line_test
geometry/test/direction

Geometry II - M.Asai (SLAC) 44

Debugging tools: DAVID

•  DAVID is a graphical debugging tool for detecting
potential intersections of volumes

•  Accuracy of the graphical representation can be
tuned to the exact geometrical description.
–  physical-volume surfaces are automatically

decomposed into 3D polygons
–  intersections of the generated polygons are

parsed.
–  If a polygon intersects with another one, the

physical volumes associated to these polygons
are highlighted in color (red is the default).

•  DAVID can be downloaded from the Web as
external tool for Geant4
–  http://geant4.kek.jp/~tanaka/

Geometry II - M.Asai (SLAC) 45

Debugging tools: OLAP
  Stand-alone batch application

  Provided as extended example
  Can be combined with a graphical environment and GUI

46

Material scanner
•  Measures material thickness in units of geometrical length, radiation length and

interaction length.

–  It can be region sensitive, so that you can measure the thickness of one
particular region.

•  /control/matScan

–  scan - Start material scanning.

–  theta - Define theta range.

–  phi - Define phi range.

–  singleMeasure - Measure thickness for one particular direction.

–  eyePosition - Define the eye position.

–  regionSensitive - Set region sensitivity.

–  region - Define region name to be scanned.

THANK YOU

47

Geant4 v9.4

To learn more

48

Your detector construction

#ifndef MyDetectorConstruction_h
#define MyDetectorConstruction_h 1
#include “G4VUserDetectorConstruction.hh”
class MyDetectorConstruction
 : public G4VUserDetectorConstruction
{
 public:
 G4VUserDetectorConstruction();
 virtual ~G4VUserDetectorConstruction();
 virtual G4VPhysicalVolume* Construct();
 public:
 // set/get methods if needed
 private:
 // granular private methods if needed
 // data members if needed
};
#endif

49

G4PVPlacement
G4PVPlacement(

 G4Transform3D(G4RotationMatrix &pRot, // rotation of daughter volume

 const G4ThreeVector &tlate), // position in mother frame

 G4LogicalVolume *pDaughterLogical,

 const G4String &pName,

 G4LogicalVolume *pMotherLogical,

 G4bool pMany, // ‘true’ is not supported yet…

 G4int pCopyNo, // unique arbitrary integer

 G4bool pSurfChk=false); // optional boundary check

•  Single volume positioned relatively to the mother volume.

Geometry II - M.Asai (SLAC) 50

rotation

Mother volume

translation in

mother frame

G4PVParameterized : example

G4VSolid* solidChamber =

 new G4Box("chamber", 100*cm, 100*cm, 10*cm);

G4LogicalVolume* logicChamber =

 new G4LogicalVolume

 (solidChamber, ChamberMater, "Chamber", 0, 0, 0);

G4VPVParameterisation* chamberParam =

 new ChamberParameterisation();

G4VPhysicalVolume* physChamber =

 new G4PVParameterised("Chamber", logicChamber,

 logicMother, kZAxis, NbOfChambers, chamberParam);

51

G4VPVParameterisation : example
class ChamberParameterisation : public G4VPVParameterisation

{

 public:

 ChamberParameterisation();

 virtual ~ChamberParameterisation();

 virtual void ComputeTransformation // position, rotation

 (const G4int copyNo, G4VPhysicalVolume* physVol) const;

 virtual void ComputeDimensions // size

 (G4Box& trackerLayer, const G4int copyNo,

 const G4VPhysicalVolume* physVol) const;

 virtual G4VSolid* ComputeSolid // shape

 (const G4int copyNo, G4VPhysicalVolume* physVol);

 virtual G4Material* ComputeMaterial // material, sensitivity, visAtt

 (const G4int copyNo, G4VPhysicalVolume* physVol,

 const G4VTouchable *parentTouch=0);

 // G4VTouchable should not be used for ordinary parameterization

};

Geometry II - M.Asai (SLAC) 52

G4VPVParameterisation : example
void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume* physVol) const
{
 G4double Xposition = … // w.r.t. copyNo
 G4ThreeVector origin(Xposition,Yposition,Zposition);
 physVol->SetTranslation(origin);
 physVol->SetRotation(0);
}

void ChamberParameterisation::ComputeDimensions
(G4Box& trackerChamber, const G4int copyNo,
 const G4VPhysicalVolume* physVol) const
{
 G4double XhalfLength = … // w.r.t. copyNo
 trackerChamber.SetXHalfLength(XhalfLength);
 trackerChamber.SetYHalfLength(YhalfLength);
 trackerChamber.SetZHalfLength(ZHalfLength);
}

53

G4VPVParameterisation : example
G4VSolid* ChamberParameterisation::ComputeSolid
 (const G4int copyNo, G4VPhysicalVolume* physVol)
{
 G4VSolid* solid;
 if(copyNo == …) solid = myBox;
 else if(copyNo == …) solid = myTubs;
 …
 return solid;
}

G4Material* ComputeMaterial // material, sensitivity, visAtt
 (const G4int copyNo, G4VPhysicalVolume* physVol,
 const G4VTouchable *parentTouch=0);
{
 G4Material* mat;
 if(copyNo == …)
 {
 mat = material1;
 physVol->GetLogicalVolume()->SetVisAttributes(att1);
 }
 …
 return mat;
}

54

Geant4 v9.4

Divided volume

56

G4PVDivision
•  G4PVDivision is a special kind of G4PVParameterised.

–  G4VPVParameterisation is automatically generated
according to the parameters given in G4PVDivision.

•  G4PVDivision is similar to G4PVReplica but

–  It currently allows gaps in between mother and daughter
volumes

–  We are extending G4PVDivision to allow gaps between
daughters, and also gaps on side walls. We plan to
release this extension in near future.

•  Shape of all daughter volumes must be same shape as the
mother volume.

–  G4VSolid (to be assigned to the daughter logical
volume) must be the same type, but different object.

•  Replication must be aligned along one axis.

•  If your geometry does not have gaps, use G4Replica.

–  For identical geometry, navigation of G4Replica is
faster.

mother volume

57

nDivisions

G4PVDivision - 1

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions, // number of division is given
 const G4double offset);
	

•  The size (width) of the daughter volume is calculated as
((size of mother) - offset) / nDivisions

offset

58

G4PVDivision - 2

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4double width, // width of daughter volume is given
 const G4double offset);
	

•  The number of daughter volumes is calculated as
int(((size of mother) - offset) / width)
–  As many daughters as width and offset allow

offset
width

59

nDivisions

width

G4PVDivision - 3

G4PVDivision(const G4String& pName,
 G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical,
 const EAxis pAxis,
 const G4int nDivisions,
 const G4double width, // both number of division and width are given
 const G4double offset);
	

•  nDivisions daughters of width thickness

offset

60

G4PVDivision
•  G4PVDivision currently supports following shapes / axes.

–  G4Box : kXAxis, kYAxis, kZAxis
–  G4Tubs : kRho, kPhi, kZAxis
–  G4Cons : kRho, kPhi, kZAxis
–  G4Trd : kXAxis, kYAxis, kZAxis
–  G4Para : kXAxis, kYAxis, kZAxis
–  G4Polycone : kRho, kPhi, kZAxis

•  kZAxis - the number of divisions has to be the same as solid sections,
(i.e. numZPlanes-1), the width will not be taken into account.

–  G4Polyhedra : kRho, kPhi, kZAxis
•  kPhi - the number of divisions has to be the same as solid sides, (i.e.

numSides), the width will not be taken into account.
•  kZAxis - the number of divisions has to be the same as solid sections,

(i.e. numZPlanes-1), the width will not be taken into account.
•  In the case of division along kRho of G4Cons, G4Polycone, G4Polyhedra, if

width is provided, it is taken as the width at the -Z radius; the width at other radii
will be scaled to this one.	

G4ReplicatedSlice
•  New extension of G4Division introduced with version 9.4.
•  It allows gaps in between divided volumes.

G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical, const EAxis pAxis,
 const G4int nDivisions, const G4double half_gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical, const EAxis pAxis,
 const G4double width, const G4double half_gap, const G4double offset);
G4PVDivision(const G4String& pName, G4LogicalVolume* pDaughterLogical,
 G4LogicalVolume* pMotherLogical, const EAxis pAxis,
 const G4int nDivisions, const G4double width,
 const G4double half_gap, const G4double offset);

Geometry II - M.Asai (SLAC) 61

nDivisions
offset

half_gap

Geant4 v9.4

Physical volume
 Replicated volume: G4PVReplica

Replicated Volumes

•  The mother volume is completely filled with replicas, all of
which are the same size (width) and shape.

•  Replication may occur along:

–  Cartesian axes (X, Y, Z) – slices are considered
perpendicular to the axis of replication

•  Coordinate system at the center of each replica

–  Radial axis (Rho) – cons/tubs sections centered on the
origin and un-rotated

•  Coordinate system same as the mother

–  Phi axis (Phi) – phi sections or wedges, of cons/tubs
form

•  Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

63

a daughter
logical volume to
be replicated

mother volume

G4PVReplica

G4PVReplica(const G4String &pName,

 G4LogicalVolume *pLogical,

 G4LogicalVolume *pMother,

 const EAxis pAxis,

 const G4int nReplicas,

 const G4double width,

 const G4double offset=0.);

•  offset may be used only for tube/cone segment

•  Features and restrictions:

–  Replicas can be placed inside other replicas

–  Normal placement volumes can be placed inside replicas, assuming no
intersection/overlaps with the mother volume or with other replicas

–  No volume can be placed inside a radial replication

–  Parameterised volumes cannot be placed inside a replica

64

Replica - axis, width, offset

•  Cartesian axes - kXaxis, kYaxis, kZaxis

–  Center of n-th daughter is given as

-width*(nReplicas-1)*0.5+n*width

–  Offset shall not be used

•  Radial axis - kRaxis

–  Center of n-th daughter is given as

width*(n+0.5)+offset

–  Offset must be the inner radius

of the mother

•  Phi axis - kPhi

–  Center of n-th daughter is given as

width*(n+0.5)+offset

–  Offset must be the starting angle of the mother
65

offset

width

offset

width

width

G4PVReplica : example
G4double tube_dPhi = 2.* M_PI * rad;

G4VSolid* tube =

 new G4Tubs("tube",20*cm,50*cm,30*cm,0.,tube_dPhi);

G4LogicalVolume * tube_log =

 new G4LogicalVolume(tube, Air, "tubeL", 0, 0, 0);

G4VPhysicalVolume* tube_phys =

 new G4PVPlacement(0,G4ThreeVector(-200.*cm,0.,0.),

 "tubeP", tube_log, world_phys, false, 0);

G4double divided_tube_dPhi = tube_dPhi/6.;

G4VSolid* div_tube =

 new G4Tubs("div_tube", 20*cm, 50*cm, 30*cm,

 -divided_tube_dPhi/2., divided_tube_dPhi);

G4LogicalVolume* div_tube_log =

 new G4LogicalVolume(div_tube,Pb,"div_tubeL",0,0,0);

G4VPhysicalVolume* div_tube_phys =

 new G4PVReplica("div_tube_phys", div_tube_log,

 tube_log, kPhi, 6, divided_tube_dPhi);
66

67

Debugging run-time commands
•  Example layout:

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes
 The volumes Tracker[0] and Overlap[0],
 both daughters of volume World[0],

 appear to overlap at the following points in global coordinates: (list
truncated)

 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 240 -240 -145.5 -145.5 0 -145.5 -145.5
Which in the mother coordinate system are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .
Which in the coordinate system of Tracker[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----

 . . .
Which in the coordinate system of Overlap[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .

