

Measurements of $H \rightarrow \mu \mu$ for $e^+e^- \rightarrow Z(qq)H$ production at the CEPC

¹Yanping Huang, ¹Gang Li, ¹²Qi Liu, ¹Kunlin Ran, ²Liang Sun

> ¹IHEP ²Wuhan University

November 8, 2020

Outline

- Motivation
- Detector and samples
- Event selection
- Inclusive analysis
- MVA(BDTG) optimization
- Summary

Motivation

- H $\rightarrow \mu \mu$ is important for probing the Higgs Yukawa couplings.
 - The interactions of Higgs to the third generation charged fermions have already been observed by both ATLAS and CMS experiment. JHEP08(2016)045
 - Only upper limits exist on the Higgs interactions with other generations fermions.
 - Also, it offers the best opportunity to measure the couplings to the second generation fermions.
- In the ATLAS experiment, An upper limit of 2.2 at 95% CL is set on the signal strength(u). <u>arxiv2007.07830</u>

• In the projections with the ATLAS detector at HL-LHC(3000 fb⁻¹), the expected uncertainty of \varkappa_{μ} is ~7%. <u>ATL-PHYS-PUB-2018-054</u>

Introduction of $e^+e^- \rightarrow Z(qq)H(\mu\mu)$

- With electron-positron colliders, we can gain much higher significance due to extremely cleaner background.
- Previous Measuerment(Zhen-Wei Cui et al.) [05301]gave counting significance at [124, 125] GeV: 10.8σ.

We'd like to update and improve the analysis.

- Develop new selection criterial by keeping most signals and suppressing background.
- Further make event categories by applying MVA method.
- Use new detector geometry and new samples to show the latest sensitivity of the CEPC detector for measuring mumu events.

Detector and samples

- CEPC Detector: v4 ,√s=240GeV, 1uminosity:5 ab⁻¹,3.5 Tes1a magnetic field.
- Sample:
 - -signal :qqh_e2e2, ~100M
 - -background :
 - \cdot 2 fermions, ~28 M
 - 4 fermions
 - -Single W, ~18M
 - -Single Z, ~8 M
 - -WW, 46 M
 - —ZZ, ~6 M
 - -Z or W: ~ 20 M

- To suppress background and keep most signals, event selections are developed.
- After several studies, considering both signal/background efficiencies, event selections are finalized.
- Table show you that the aims of each cut component.
- · Performances of each cut can be found in the backup.

cut	reason
$N^+_\mu > 0, N^\mu > 0$	H to mumu requires 2 opposite charged muons
$105 < M_{\mu\mu} < 130 GeV$	$M_{\mu\mu}$ should be close to M_H (125 GeV)
$25 < N_{particle} < 115$	di-jet system requires more objects than all leptons final stats
$55 < M_{qq} < 125 GeV$	M_{qq} should be close to M_Z (91.2 GeV)
$P_{qq\mu\mu} < 32 GeV, \ 195 < E_{qq\mu\mu} < 265 GeV$	$qq\mu\mu$ system should has 4 momentum close to (0, 0, 0, En), En=240 GeV
$35 < E_{\mu}^{-} < 100 GeV$, $35 < E_{\mu}^{+} < 100 GeV$	To suppress WW background
$16 < p_{\mu\mu} < 72 GeV$	To suppress hadronic background components with muons in jet clusters
$-20 < Px_{miss}$, $Py_{miss} < 20$ and Δ_{μ^-qq,μ^+} , $\Delta_{\mu^+qq,\mu^-} > 2.5$	To suppress WW background
$\begin{array}{c} 35 < E_{\mu}^{-} < 100 GeV \ , \ 35 < E_{\mu}^{+} < 100 GeV \\ 16 < p_{\mu\mu} < 72 GeV \\ -20 < Px_{miss} \ , Py_{miss} < 20 \ \text{and} \ \Delta_{\mu^{-}qq,\mu^{+}}, \ \Delta_{\mu^{+}qq,\mu^{-}} > 2.5 \end{array}$	To suppress WW background To suppress hadronic background components with muons in jet clusters To suppress WW background

- Signal efficiency: 79.4%
- The background : zz (95.4%) , ww (4%) , 2f (0.6%)

The mass spectrum

• After selection criterial, the signal significance in the $\mu \mu$ mass spectrum can be obtained by counting expression $\sqrt{2[(s+b) \cdot \ln(1+\frac{s}{b})-s]}$.

Fig. :The distribution $M_{\mu \mu}$

- It is estimated that signal significance in [124,125] GeV:4.288 σ
- The significance is smaller than previous measuerment due to the width of Z boson being considered in our study.

Signal and background modelling

 signal probability function: Double side crystal ball(DSCB).

background probability function:

Second order Chebyshev.

- DSCB is commonly used for fitting resonant H mass spectrum and shows great agreement with the signal MC.
- For background, I tested many other functions such as Exponential, Bernstein, finally we choose the best Chebyshev function.

Fitting strategy

- Signal model : double side crystal ball.
- Background model : Chebyshev.
- POI: μ . (the signal strength $\mu = \frac{\sigma_{Z(qq)H}}{\sigma_{Z(qq)H}^{SM}} \times \frac{Br_{\mu\mu}}{Br_{\mu\mu}^{SM}}$)
- Parameters:

Parameters in signal and background model are fixed by fitting simulated events.,

The number of background and μ are float.

• Then a unbinned maximum likelihood fit are performed.

Fitting results in the inclusive analysis

Fig. :The fit resluts of $\mathrm{M}_{\mu\,\mu}$

- $\mu = 0.996578 + / (-0.19, 0.20)$.
- significance: 5.67σ.

MVA optimization

- In order to improve signal significance, MVA analysis is performed. We exploit BDTG to further classify two categories.
- These 8 variables are trained(see backup): $\cos \theta_{qq}$, M_{qq} , $\cos \theta_{jet2}$, Δ_{jet2, μ^+} , Δ_{jet1, μ^-} , Px_{jet2} , Py_{jet2} , Δ_{μ^-, μ^+} .
- The BDT response distribution are shown in Fig.

• We can take two categories, BDTG response > 0.2, denoted by tight category, otherwise loose category.

Mass distribution under tight and loose category

• We get two categories : tight(BDTG>0.2) and loose(BDTG<0.2).

• The signal and background probability functions are parametrized in the same model as the previous inclusive analysis.

Simultaneous fit

• We performed a simultaneous fit on 2 categories to get the signal significance and strength.

- u = 1.12472 + / 0.19
- significance: 6.9σ
- 17.8% improvement comparing to inclusive analysis.

Summary

- After event selections, the signal efficiency is 79%; The dominant background is ZZ to muons/jets.
- It is estimated the signal significance is 5.67σ in $e^+e^- \rightarrow Z(qq)H(\mu \mu)$ inclusive analysis.
- Applying the optimal BDTG cut and making a simultaneous fit on 2 categories, the significance of 6.9σ can acheived with 17.8% improvement comparing to inclusive analysis.
- The signal strength value can be determined as 1.12 with an uncertainty of 19.%.

THANK YOU

backup

- M_mumu cut: (105,130)
- M_mumu should close to M_H < (125 GeV)

- N_particle cut: (25,115)
- di-jet system requires more objects.

- M_dijet cut: (55,125)
- M_dijet should be close to M = (91.2GeV).

- P_qqmumu cut: (0,32)
- E_qqmumu cut: (195,265)

- E_muM cut: (35,100)
- E_muP cut: (35,100)

To suppress WW background

P_mumu cut: (18,72)

- Px_miss cut: (-20,20)
- Py_miss cut: (-20,20)
- angle_muMqq_muP (2.5,3.2)
- angle_muPqq_muM (2.5,3.2)

To suppress WW background

MVA optimization

- In order to improve signal significance, MVA analysis is performed. We exploit BDTG to further classify two categories.
- Training variables selection criterial
 - Not highly correlated with $M_{\mu\mu}$.
 - Not strongly anti-correlated with each other.
- Variable $\cos \theta_{qq}$, M_{qq} , $\cos \theta_{jet2}$, Δ_{jet2,μ^+} , $\Delta_{jet1,\mu}$, Px_{jet2} , Py_{jet2} , Δ_{μ^-,μ^+} are taken eventually.

Signal/background modellings in categories

- tight(left) and loose(right)
- signal function: DSCB

background function: second order Chebyshev

Asimov fit results

Asimov fit results

• two categories

