

Status of Higgs physics at CEPC

Yaquan Fang (IHEP) on behalf of CEPC Higgs working group

The 6th China LHC Physics Workshop November 6-9, 2020 Tsinghua University

Higgs related physics at e⁺e⁻ collider

- With the increase of the energy, different Higgs related physics can be explored at e⁺e⁻ collider.
- With the energy around 240 GeV, ZH as well as ww/zz fusion can be intensively studied.
 - the dominant production is from HZ, the WW/ZZ fusions contribute a few percent of the total cross-section.

SM Higgs decay branching ratio, Bkg process

 ✓ e⁺e⁻ collider provides a good opportunity to measure the jj, invisible decay of Higgs.
 ✓ For 5.6 ab⁻¹ data with CEPC, 1M Higgs, 10M Z, 100M W are produced.

Performance

Higgs analyses @CEPC CDR

A lot of decay channels can be investigated.

Direct measurement of Higgs cross-section

$$M_{\rm recoil}^2 = (\sqrt{s} - E_{ff})^2 - p_{ff}^2 = s - 2E_{ff}\sqrt{s} + m_{ff}^2$$

- ✓ For this model independent analysis, we reconstruct the recoil mass of Z without touching the other particles in a event.
 ✓ The M_{recoil} should exhibit a resonance peak at m_H for signal; Bkg is expected to smooth.
- ✓ The best resolution can be achieved from $Z(\rightarrow e^+e^-, \mu^+\mu^-)$.

Direct measurement of Higgs cross-section and m_H

- The combined precision with three channels is $\Delta\sigma/\sigma=0.5\%$
- Similar sub-percent level for ILC/FCC-ee
- ✓ The mass of Higgs can be measured with a precision 5.9 MeV combining Z→ee (14 MeV) and Z→ $\mu\mu$ (6.5 MeV)

Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)}$$
 Precision : 5.1%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.5%

• These two orthogonal methods can be combined to reach the best precision. Precision: 2.8%

Precision for the Measurement of Higgs

	Estimated Precision			
Property	CEPC-v1		CEP	PC-v4
m_H	5.9	MeV	5.9	MeV
Γ_H	2.	7%	2.8	8%
$\sigma(ZH)$	0.	5%	0.	5%
$\sigma(u \bar{ u} H)$	3.	0%	3.1	2%
Decay mode	$\sigma\!\times\!{\rm BR}$	BR	$\sigma \times BR$	BR
$H \rightarrow b \bar{b}$	0.26%	0.56%	0.27%	0.56%
$H \rightarrow c\bar{c}$	3.1%	3.1%	3.3%	3.3%
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%
$H \mathop{\rightarrow} WW^{\star}$	0.9%	1.1%	1.0%	1.1%
$H \rightarrow ZZ^*$	4.9%	5.0%	5.1%	5.1%
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%
$H \rightarrow Z \gamma$	13%	13%	16%	16%
$H \rightarrow \tau^+ \tau^-$	0.8%	0.9%	0.8%	1.0%
$H \rightarrow \mu^+ \mu^-$	16%	16%	17%	17%
BR_{inv}^{BSM}	_	< 0.28%	_	< 0.30%

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs Physics at the CEPC

20]

Mar

4

K

Thep

 \sim

10.0903

 $\overline{\infty}$

Fenfen An^{4,23} Yu Bai⁹ Chunhui Chen²³ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴ Zhenwei Cui³ Yaquan Fang^{4,6,34} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²² Yuanning Gao³ Shao-Feng Ge^{15,29} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo¹⁰ Tao Han^{5,31} Shuang Han⁴ Hong-Jian He^{11,10} Xianke He¹⁰ Xiao-Gang He^{11,10,20} Jifeng Hu¹⁰ Shih-Chieh Hsu³² Shan Jin⁸ Maoqiang Jing^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo²¹ Pei-Zhu Lai²¹ Boyang Li⁵ Conggiao Li³ Gang Li^{4,34} Haifeng Li¹² Liang Li¹⁰ Shu Li^{11,10} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang^{4,34} Libo Liao⁴ Bo Liu^{4,23} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{26,30} Xinchou Lou^{4,6,33,34} Lianliang Ma¹² Bruce Mellado^{17,18} Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²⁴ Zhuoni Qian¹⁹ Nikolaos Rompotis²² Manqi Ruan⁴ Alex Schuy³² Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴ Shufang Su²⁵ Dayong Wang³ Jin Wang⁴ Lian-Tao Wang²⁷ Yifang Wang^{4,6} Yuqian Wei⁴ Yue Xu⁵ Haijun Yang^{10,11} Ying Yang⁴ Weiming Yao²⁸ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴ Mingrui Zhao² Xianghu Zhao⁴ Ning Zhou¹⁰ ² China Institute of Atomic Energy, Beijing 102413, China School of Physics, Peking University, Beijing 100871, China
 ⁴ Institute of High Energy Physics, Riesilag 100049, China
 ⁵ Department of Engineering Physics, Physics Bopartment, Tsinghua University, Beijing 100084, China ⁶ University of Chinese Academy of Science (UCAS), Beijing 100049, China ⁷ School of Nuclear Science and Technology, University of South China, Hengyang 421001, China ⁸ Department of Physics, Nanjing University, Nanjing 210083, China ⁹ Department of Physics, Southeast University, Nanjing 210066, China ¹⁰ School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoR, SKLPPO, Shanghai 200240, China ¹¹ Tsung-Dao Lee Institute, Shanghai 200240, China ¹² Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
¹³ PRISMA Cluster of Excellence & Mainz Institute of Theoretical Physics, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany ¹⁴ Department of Physics, Hong Kong University of Science and Technology, Hong Kong ¹⁶ Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japar ⁶ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia ¹⁷ School of Physics and Institute for Collider Particle Physics, University of the Wiwatersrand, Johannesburg 2050, South Africa ¹⁸ iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa ¹⁹ Center for Theoretical Physics of the Universe, Institute of Basic Science, Daeleon 34126, South Korea ²⁰ Center for Tasoretical Physics of the Universe, Institute of Isaac Scenes, Liagueon 34128, South Korea Weight Control Physics, National Taiwan Universe, Tupel 10017, Theorem Toryana City 2001, Taiwan 2³² Department of Physics, University of Liverpool, Liverpool L69 72X, United Kingdom 2³² Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA 2⁴³ Department of Physics, University of Arbona, Aricona 85721, USA 2⁵³ Department of Physics, University of Arbona, Aricona 85721, USA 2⁵⁵ Department of Physics, University of Arbona, Aricona 85721, USA 2⁵⁵ Department of Physics, University of Arbona, Aricona 85721, USA 2⁵⁵ Department of Physics, University of Arbona, Aricona 85721, USA 2⁵⁵ Department of Physics, University of Arbona, A ²⁶ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia 60510, USA 27 Department of Physics, University of Chicago, Chicago 60637, USA ²⁸ Lawrence Berkeley National Laboratory, Berkeley, California 94720, US/ ²⁹ Department of Physics, University of California, Berkeley, California 9120, USA or Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh 15260, USA ³² Department of Physics, University of Washington, Seattle 98195-1560, USA
 ³³ Department of Physics, University of Texas at Dallas, Texas 75080-3021, USA ³⁴ Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, China

- ✓ With combination of σ•Br of vvH(→bb) /Br(H→bb)/Br(H→ww) and the direct measurement, one can obtain the decay width of Higgs with the precision at ~3%.
- The measurement of Br is done by introducing the uncertainty of xsection of ZH from the direct measurement around sub-precent level.
- Most precisions are a few percent or lower (bb, invisible), allowing us to be sensitive to BSM deviation
- CEPC is complementary to LHC at the Higgs precision measurement.
- Higgs white paper are published at CPC (arxiv: <u>1810.09037</u>) and results are included in CDR.
 - Other publications: σ(ZH):1601.05352; bb/cc/gg: 1905.12903; ττ:1903.1232
 Invisible: 2001.05912 (new)

Precision for the measurement of Higgs

Property	Estimated Pr	recision	
m_H	5.9 MeV		
Γ_H	3.1%)	
$\sigma(ZH)$	0.5%)	
$\sigma(\nu\bar{\nu}H)$	3.2%)	
Decay mode	$\sigma(ZH) \times \mathrm{BR}$	BR	
$H \rightarrow b\bar{b}$	0.27%	0.56%	
$H \rightarrow c\bar{c}$	3.3%	3.3%	
$H \rightarrow gg$	1.3%	1.4%	
$H \rightarrow WW^*$	1.0%	1.1%	
$H \rightarrow ZZ^*$	5.1%	5.1%	
$H \rightarrow \gamma \gamma$	6.8%	6.9%	
$H \rightarrow Z\gamma$	15%	15%	
$H \to \tau^+ \tau^-$	0.8%	1.0%	
$H ightarrow \mu^+ \mu^-$	17%	17%	
$H \rightarrow \text{inv}$	_	< 0.30%	

CEPC CDR: arxiv: 1811.10545

Fcc-ee 240 GeV/365 GeV: CERN-ACC-2018-0057

\sqrt{s} (GeV)	240		36	5
Luminosity (ab^{-1})	5	5		5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$
${\rm H} \rightarrow {\rm any}$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\rm H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H\to\gamma\gamma$	± 9.0		± 18	± 22
$\mathrm{H} \rightarrow \mu^{+}\mu^{-}$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

• Fcc-ee has similar results as CEPC but including a 365 GeV run improving the measurement of Higgs width.

MVA methods used in different channels and other activities

• After training with 6 variables: $cos\theta_{ee}$, $cos\theta_{\mu\mu}$, $\Delta_{\mu,\mu}$, M_{qq} , E_{ee} , $E_{qq\mu\mu}$, get the BDTG response

Scan the total sensitivity $(S/\sqrt{S+B})$ vs BDTG to find the optimal BDTG point update w.r.t inclusive one.

The sensitivity is estimated in the 90% signal coverage region

	Sig yield	Bkg yield	Sensitivity	Mass range (GeV)
BDTG > 0.45	86.20 +/- 0.51	198.20 +/- 19.82	7.46 +/- 0.27	[120.78 - 125.33]
BDTG < 0.45	29.77 +/- 0.30	1402.95 +/- 52.73	1.08 +/- 0.03	[114.08 - 125.28]
Total	115.97 +/- 0.59	1601.15 +/- 56.33	7.54 +/- 0.38	

- For H->μμ, the improvement is ~35% w.r.t cut based one for the signal significance (improvement on precision 17%-12%).
 - The overall precision has been improved from 6.8% to 5.7% with MVA as well as full simulated samples used for H->γγ.

H->ZZ 10² 10² 10² 10² 10² 10⁴ 10

H-

Category	$\frac{\Delta(\sigma \cdot BR)}{(\sigma \cdot BR)} \ [\%]$		
>LL	cut-based	BDT	
$\mu\mu\mathrm{H} u u q q^{\mathrm{cut}/\mathrm{mva}}$	15.5	13.6	
$\mu\mu\mathrm{H}qq u u^{\mathrm{cut}/\mathrm{mva}}$	48.0	42.1	
$ u u \mathrm{H} \mu \mu q q^{\mathrm{cut}/\mathrm{mva}}$	11.9	12.5	
$ u u \mathrm{H} q q \mu \mu^{\mathrm{cut}/\mathrm{mva}}$	23.5	20.5	
$qq \mathrm{H} u u \mu \mu^{\mathrm{cut}/\mathrm{mva}}$	45.3	37.0	
$qq { m H} \mu \mu u u^{ m cut/mva}$	52.4	44.4	
Combined	8.34	7.89	

Higgs related physics at 360 GeV (generic study)

Zhen Liu, Liantao Wang et al.

- ↔ With the NNLO calcuation, the highest xsection is at the energy of 381.3 GeV
- Considering the Lumi-suppression factor when going to higher energy, the effective highest xsection is around 365 GeV.
- ✤ The effective xsection from 360 GeV is not much different from that of 365 GeV.
- ✤ If we choose higher order correction, the peak could be even lower than 360 GeV.
- ✤ For 2 ab⁻¹ data, it will take 4-5 years with optimized setup of the accelerator.

Extrapolations

- Mainly scale yields from 240GeV case.
- $\sigma(ZH)$: preliminarily, around 1%
 - Need patient work on qqH channel
- Resolution change: 2 benchmarks

diphoton: would better; from ~2.5GeV to 2GeV; (9% -> 8%)

Ideal inclusive $Z \rightarrow \mu\mu: 0.92\% \rightarrow 1.72\%$

Additional sensitivity on Higgs measurement

	240GeV,	360Ge	/ 2ah ⁻¹
	5.6ab ⁻¹	00000	v, 200
	ZH	ZH	vvH
any	0.50%	1%	١
$H \rightarrow bb$	0.27%	0.63%	0.76%
$H \rightarrow cc$	3.3%	6.2%	11%
$H \rightarrow gg$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
here $H \rightarrow ZZ$	5.1%	12%	13%
$\mathrm{H} \to \tau\tau$	0.8%	1.5%	3%
$H \rightarrow \gamma \gamma$	5.4%	8%	11%
$H \rightarrow \mu \mu$	12%	29%	40%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H) \rightarrow Z\gamma)$	16%	25%	١
Width	2.9%		
Combined Width 240/360	1.4%		

Fcc-ee 240 GeV/365 GeV: CERN-ACC-2018-0057

\sqrt{s} (GeV)	240		36	5
Luminosity (ab ⁻¹)	5	j	1.	5
$\delta(\sigma BR)/\sigma BR(\%)$	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$
${\rm H} \rightarrow {\rm any}$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\rm H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$\mathrm{H} \rightarrow \mu^{+}\mu^{-}$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

For Higgs physics results, there are no significant different for the colliding energy with 360 GeV or 365 GeV.

combined width: 1.3%

Jiayin Gu, Cen Zhang et al.,

Impact on Higgs

light shades: 12 Higgs op. floated + 6 top op. floated dark shades: 12 Higgs op. floated + 6 top op. $\rightarrow 0$

Uncertainties on the top have a big effect on the Higgs

- · Higgsstr. run: insufficient
- Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
- Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
- Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus top@HL-LHC: top contam. in <math>\bar{c}_{gg}$ only

Triple Higgs coupling:

Conclusion

- After the Higgs white paper and CDR are done, analyses from individual channels have been documented. Several publications of them are available now.
- Improved analyses on each individual channels are on going.
- We also have a generic study on Higgs physics at 360 GeV (360 GeV/2 ab⁻¹ as a benchmark)
 - Can bring some improvements in Higgs precision measurement in addition to top coupling measurements.
 - Significant improvement on Higgs width measurement.
 - Top coupling measurements itself has some impact on Higgs

backup slides

Combination/comparisons with HL-LHC

Typical individual channels

2020/11/8

Signal/bkg Cross Sections

Kaili Zhang

• 240GeV:

- ZH: 196.9; vvH: 6.2; interference: ~10% of vvH; about 318:10:1; (Z->vve)
- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Total	203.6		159.0		
Total Events	1.14M		0.32M		

In total ~1.5M Higgs would be collected in CEPC 240+360. More fusion events, also eeH can not be ignored in 360GeV.

CEPC: 240-250GeV ere* Higgs Factory

 Table 2. Key characteristic/performance of a conceptual CEPC detector.

Geometry acceptance	TPC (97%), FTD (99.5%)
Tracking efficiency	$\sim 100\%$ within geometry acceptance
Tracking performance	$\Delta(1/p_T) \sim 2 \times 10^{-5} \ (1/\text{GeV})$
ECAL intrinsic energy resolution	$16\%/\sqrt{E} \oplus 1\%$ (GeV)
HCAL intrinsic energy resolution	$60\%/\sqrt{E} \oplus 1\%$ (GeV)
Jet energy resolution	3-4%
Impact parameter resolution	$5~\mu{ m m}$

- ✓ A CEPC (phase I)+ Super proton-proton
 Collider (SPPC) was proposed
- ✓ Ecm ~240-250 GeV, Lum 5.6 ab⁻¹ for 10 years

Status of H-> $\tau\tau$

- Develop signal strength analysis with and without jets
 - MVA for the former
 - TAURUS package
- Study BMR dependency
- Decay modes ID....

	$\delta(\sigma imes BR)/(\sigma imes BR)$
$\mu\mu H$	2.8%
eeH	5.1%
VVH	7.9%
qqH	0.9%
combined	0.8%

Dan Yu's talk

Status of H->bb,cc,gg

- Wrap the analysis into <u>a note</u> and submit to CPC.
- Flavor tagging used in the fit (3 dim)

10000-500-CEPC CEPC CEPC 60-400-8000 Preliminary 50-3 Preliminary Preliminary H->bb H->gg 6000-300 H->cc 40-30-200 4000 20-2000-100 0.90.80.70.60.50.40.30.20.1 0 0.1 0 0.90.8 *Uteness* 0.70.6 0.50.4 0.30.2 0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 B $C_{L_{A_{eness}}}^{0.9.8}$ $0.7_{0.6}^{0.7}$ $0.5_{0.4}^{0.3}$ $0.2_{0.1}^{0.2}$ $0.2_{0.3}^{0.2}$ $0.4_{0.5}^{0.6}$ $0.7_{0.1}^{0.2}$ $0.3_{0.4}^{0.2}$ $0.5_{0.6}^{0.6}$ $0.7_{0.1}^{0.2}$ $0.3_{0.4}^{0.2}$ $0.5_{0.6}^{0.6}$ $0.7_{0.1}^{0.2}$ $0.3_{0.4}^{0.2}$ $0.5_{0.6}^{0.6}$ $0.7_{0.1}^{0.2}$ $0.3_{0.4}^{0.2}$ $0.5_{0.6}^{0.6}$ $0.7_{0.1}^{0.2}$ $0.3_{0.4}^{0.2}$ $0.5_{0.6}^{0.6}$ $0.7_{0.6}^{0.1}$ CLikeness 0.2 0.3 0.4 0.5 0.6 0.7 0.8 BLikeness

• Start to consider the systematics.

Decay mode	$\sigma(ZH) \times BR$	BR	
$H \rightarrow b\bar{b}$	0.28%	0.57%	
$H \rightarrow c\bar{c}$	2.2%	2.3%	
$H \rightarrow gg$	1.6%	1.7%	

More at Yu Bai's talk

HL-LHC: Differential xsection measurement

The precision can reach a few percent for different p_T bins.

HL-LHC H-> $\gamma\gamma$: one example

Scenario S1: Total uncertainty is half of the one used for the result of 80 fb⁻¹. Scenario S2: Total uncertainty is 1/3 of the one for 80 fb⁻¹.

HL-LHC H-> $\gamma\gamma$: very advanced analyses (example)

- The inclusive analysis is very simple :
 - Photon ID, Isolation, Kinematic cuts on leading/subleading photon.
- Explore other possible improvements ?
 - Divide events into different categories.

Higgs white paper @ CDR

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs Physics at the CEPC^{*}

Fenfen An^{4,23} Yu Bai⁹ Chunhui Chen²³ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴ Zhenwei Cui³ Yaquan Fang^{4,6,34} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²² Yuanning Gao³ Shao-Feng Ge^{15,29} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo¹⁰ Tao Han^{5,31} Shuang Han⁴ Hong-Jian He^{11,10} Xianke He¹⁰ Xiao-Gang He^{11,10,20} Jifeng Hu¹⁰ Shih-Chieh Hsu³² Shan Jin⁸ Maoqiang Jing^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo²¹ Pei-Zhu Lai²¹ Boyang Li⁵ Congqiao Li³ Gang Li^{4,34} Haifeng Li¹² Liang Li¹⁰ Shu Li^{11,10} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang^{4,34} Libo Liao⁴ Bo Liu^{4,23} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{26,30} Xinchou Lou^{4,6,33,34} Lianliang Ma¹² Bruce Mellado^{17,18} Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²⁴ Zhuoni Qian¹⁹ Nikolaos Rompotis²² Mang Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴ Shufang Su²⁵ Dayong Wang³ Lian-Tao Wang²⁷ Yifang Wang^{4,6} Yuqian Wei⁴ Yue Xu⁵ Haijun Yang^{10,} — Weiming Yao²⁸ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴ Mingrui Zhao² Xiang ¹ Department of Modern Physics, University of Science and Technology of China, Anhui 230 ² China Institute of Atomic Energy, Beijing 102413, China ³ School of Physics, Peking University, Beijing 100871, China ⁴ Institute of High Energy Physics, Beijing 100049, China ⁵ Department of Engineering Physics, Physics Department, Tsinghua University, Beijing 100 — ⁶ University of Chinese Academy of Science (UCAS), Beijing 100049, China ⁷ School of Nuclear Science and Technology, University of South China, Hengyang 42100. ⁸ Department of Physics, Nanjing University, Nanjing 210093, China ⁹ Department of Physics, Southeast University, Nanjing 210096, China ¹⁰ School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shar ¹¹ Tsung-Dao Lee Institute, Shanghai 200240, China University, Qingdao 266237, China

¹² Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irr ¹³ PRISMA Cluster of Excellence & Mainz Institute of Theoretical Physics, Johannes Gutenberg-Universi Germany ¹⁴ Department of Physics, Hong Kong University of Science and Technology, Hong K ¹⁵ Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, J ¹⁶ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Sert ¹⁷ School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johanne ¹⁸ iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, Sou ¹⁹ Center for Theoretical Physics of the Universe, Institute of Basic Science, Daejeon 34126, 1 ²⁰ Department of Physics, National Taiwan University, Taipei 10617, Taiwan ²¹ Department of Physics and Center for High Energy and High Field Physics, National Central University, T ²² Department of Physics, University of Liverpool, Liverpool L69 7ZX, United Kinge ²³ Department of Physics and Astronomy, Iowa State University, Ames 50011-3160, USA ²⁴ Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA ²⁵ Department of Physics, University of Arizona, Arizona 85721, USA ²⁶ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia 60510, USA ²⁷ Department of Physics, University of Chicago, Chicago 60637, USA ²⁸ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²⁹ Department of Physics, University of California, Berkeley, California 94720, USA ³⁰ Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA ³¹ Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh 15260, USA

³² Department of Physics, University of Washington, Seattle 98195-1560, USA
 ³³ Department of Physics, University of Texas at Dallas, Texas 75080-3021, USA

³⁴ Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, China

V2 is at arxiv. CPC : Vol 43, No.4 (2019) 043002

Thanks to those colleagues for great efforts. Welcome to new colleagues to join in.

	Estimated Precision				
Property	CEF	PC-v1	CEI	PC-v4	
m_H	5.9	MeV	5.9	MeV	
Γ_H	2.	7%	2	.8%	
$\sigma(ZH)$	0.	5%	0	.5%	
$\sigma(\nu \bar{\nu} H)$	3.	0%	3	.2%	
Decay mode	$\sigma \times \mathrm{BR}$	\mathbf{BR}	$\sigma \times BR$	BR	
$H \rightarrow b \bar{b}$	0.26%	0.56%	0.27%	0.56%	
$H \rightarrow c\bar{c}$	3.1%	3.1%	3.3%	3.3%	
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%	
$H \mathop{\rightarrow} WW^{\star}$	0.9%	1.1%	1.0%	1.1%	
$H \rightarrow ZZ^*$	4.9%	5.0%	5.1%	5.1%	
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%	
$H \rightarrow Z \gamma$	13%	13%	16%	16%	
$H\!\rightarrow\!\tau^+\tau^-$	0.8%	0.9%	0.8%	1.0%	
$H \rightarrow \mu^+ \mu^-$	16%	16%	17%	17%	
$\mathrm{BR}^{\mathrm{BSM}}_{\mathrm{inv}}$	-	$<\!0.28\%$	-	$<\!0.30\%$	

该二维码7天内(7月8日前)有效,重新进入将更新

Mailing list: cepc-physics@maillist.ihep.ac.cn

6

One example

Category	Events	B_{90}	S_{90}	<i>f</i> 90	Z_{90}	S_{90}^{fit}
Central low- p_{Tt}	31907	3500	180	0.05	3.04	120
Central high- p_{Tt}	1319	140	20	0.13	1.66	15
Forward low- p_{Tt}	85129	13000	310	0.02	2.73	200
Forward high- p_{Tt}	3977	540	33	0.06	1.38	25

The improvement of significance w.r.t. inclusive one is from 4.0 to 4.6, corresponding 13% improvement on the precision.

Results and systematics for H->bb,cc,gg

Combination of the 4 channels:

Statistic precision of σ (ZH)*Br(H->bb/cc/gg) is 0.3% 3.3% and 1.3%

Consistent with the goal expected in pre-CDR with full simulation samples

Decay mode	$\sigma(ZH) \times BR$	BR		
$H \rightarrow b\bar{b}$	0.28%	0.57%		
$H \rightarrow c\bar{c}$	2.2%	2.3%		
$H \rightarrow gg$	1.6%	1.7%		

IIH with 3D fit and systematic uncertainties considered:

	$\mu^+\mu^-H$			e^+e^-H		
	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$	$H \rightarrow b \bar{b}$	$H \to c \bar c$	$H \rightarrow gg$
Statistic Uncertainty	1.1%	10.5%	5.4%	1.6%	14.7%	10.5%
Fixed Background	-0.2% +0.1%	+4.1% -4.2%	7.6%	-0.2% +0.1%	+4.1% -4.2%	7.6%
Event Selection	+0.7% -0.2%	+0.4%	+0.7%	+0.7% -0.2%	+0.4%	+0.7%
Flavor Tagging	-0.4% +0.2%	+3.7% -5.0%	+0.2% -0.7%	-0.4% +0.2%	+3.7% -5.0%	+0.2%
Non uniformity	< 0.1%			< 0.1%		
Combined Systematic Uncertainty	+0.7% -0.5%	+5.5% -6.6%	+7.6% -7.8%	+0.7% -0.5%	+5.5% -6.6%	+7.6% -7.8%

Table 2. Uncertainties of $H \rightarrow b\bar{b}$, $H \rightarrow c\bar{c}$ and $H \rightarrow gg$

Analysis with more reliable approaches. Systematic uncertainties considered.

Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)}$$
 Precision : 5.1%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.5%

• These two orthogonal methods can be combined to reach the best precision. Precision: 2.8%