Simulation Study of Quadruplefoils GEM Detector

LiCheng Zhang, Aera JUNG, <u>Yue Wang</u>, Dayong Wang, Yong Ban School of Physics, Peking University, China

The 6th China LHC Physics Workshop, Tsinghua University, Nov 7, 2020.

Outline

01/ Motivation and research contents

02/ Simulation study methods

03/ Simulation results 04/ Summary and Outlook

01 Motivation

Traditional gas detector → Micro Pattern Gas Detector(MPGD)

- adapt to the working environment of high radiation flux and high counting rate on high energy and luminosity particle collider;
- adapt to high magnetic and electric field;
- possess better performance

• GEM (Gas Electron Multiplier):

- Good performance: stable and cheaper/lower discharge damage/less aging problems and longer service life…
- multilayer GEM foils structure: to acquire greater gain, operate at lower voltage …
- GEM technology is widely used in LHC experiments upgrade
- Motivation of quadruple-GEM study :
 - CMS upgrade GEM has triple foils. By adding another foil, one expects to get lower operating voltage; lower discharge probability; and lower IBF.
 - Compare triple and quadruple-GEM performance

GEM foil structure

01 Research contents

- Structural design of triple-GEM and quadruple-GEM
 - Study the effect of <u>aligned and misaligned hole-position between different foils</u>
- Simulation study of primary ionization, drift, diffusion, avalanche multiplication, induced signal readout process (calculate <u>weighting field</u> using Shockley-Ramo theorem)
- simulation study of the quadruple GEM performance, compare with triple GEM
 → Step by step multi-GEM parameterized simulation technique (STEPS)

performance	method	result
time resolution	\checkmark	\checkmark
spatial resolution	\checkmark	\checkmark
energy resolution	\checkmark	\checkmark
effective gain	\checkmark	\checkmark

status (-: on going):

performance	method	result
transparency (electron/IBF)	\checkmark	\checkmark
drift study	\checkmark	\checkmark
transport parameters	\checkmark	\checkmark
discharge probability	-	-
charging-up effect	-	-

02 Simulation study methods

Electric field calculation: ANSYS

build unit model of triple GEM and quadruple GEM by GUI operation or command flow

GUI operation:

- generate four random vectors for moving hole positions; $(0,0) \rightarrow (x_i,y_i)$ i=1,2,3,4
- establish the basic framework of unit model;
- 3. assign material attributes and mesh;
- apply voltage at the boundary and solve; 4.
- generate files containing the list of elements/nodes/materials and 5. nodal solutions;
- import generated files into garfield++. 6.

the contour plot of quadruple GEM electric potential

02 Simulation study methods

Gas simulation: Garfield++

overview of the main classes in Garfield++ and their interplay

.

drift properties, etc)

02 Simulation study methods: Calculation of induction signal

current flow begins instantaneously when the charge begins to move.

the amount of charge induced on the readout electrode is increasing continuously.

- 1. solve the poisson equation at each step on the drift of the electron-ion pair (very complicated)
- 2. solution (Shockley-Ramo theorem):

$$i(t) = q \cdot \vec{E}_w \cdot \vec{v}$$

with *q*: charge; *E_w*: weighting field; *v*: velocity

$$Q(t) = \int_0^t i(\tau) d\tau = q \int_{x_1}^{x_2} \vec{E}_w d\vec{x}$$

How to get the weighting field?

- calculate the electrostatic field for each electrode by:
 - removing the signal charge
 - setting the electrode to U = 1V and all others to 0 V

02 Simulation study methods: Time resolution

Amplitude and Rise time Compensated (ARC) timing method

eliminate the influence of pulse amplitude and rise time

eliminate the influence of pulse amplitude

02 Simulation study methods: Spatial resolution

Calculated from the position distribution of the end of the electron trajectories inside the readout gap

The charge induced on the individual strips is now depending on the position z_o of the charge. If the charge is moving there are currents flowing between the strips and ground. → The movement of the charge induces a current. I1(t) 12(t) I₃(t) I4(t) $X = \sum \frac{X_i A_i(X)}{A(X)} \qquad Y = \sum \frac{Y_i A_i(X)}{A(Y)}$ X_i, Y_i: Coordinates of the strips A_i(X), A_i(Y): Charge on strips A(X), A(Y): Total charge the amount of charge is proportional to the signal amplitude; use four electodes.

center of gravity method

9

02 Simulation study methods: Energy resolution

Procedure:

- energy calibration
- get the pulse-height spectrum of ⁵⁵Fe X-ray source
- transform it to the energy spectrum
- fit the photopeak and calculate the FWHM (absolute energy resolution $\triangle E$) and $\triangle E/E_p$ (relative energy resolution)

Primary electron number (generated by single photon) distribution of simulated ⁵⁵Fe source.

⁵⁵Fe spectrum at 4400 V for the GEM detector.

 $E(x) = Gx + E_0$

x: channel number

E : *deposited energy*

When X-rays with different energies are incident, the channel values corresponding to the photopeak are obtained. get multiple groups of (x_p, E_p) to <u>fit linearly</u>

02 Simulation study methods

Effective gain: $G_{effective} = \frac{n_t}{n_i}$

- n_i : primary electrons generated in drift gap ٠
- n_t : final electrons collected in induction gap •

Transport parameters				
	definition			
drift velocity	average velocity along the E field lin			
diffusion coefficients	diffuse outward from creation point (Gaussian distributed with a spread)			

Townsend coefficient	decide the number of e ⁻ /ion along the
attachment coefficient	(multiplication/loss)

calculation method: use class Medium from Garfield++ (member function name)

- ElectronVelocity
- ElectronDiffusion
- ElectronTownsend
- ElectronAttachment

obtain the relationship between parameters and reduced electric field strength E/p

lines

02 Simulation study methods: Transparency

schematic view of the electric field line, electric potential through a GEM hole

 $T_i = \varepsilon_{coll} \varepsilon_{extr}, i = 1, 2, 3, 4$

electron transparency for i_{th} GEM foil

electron transparency for primary electrons: n_d : primary electrons generated in drift gap n_c : primary electrons collected by GEM1

IBF (Ion Back Flow ratio):

 n_i : final ions collected in induction gap n_{di} : backflow ions in drift gap

$$R_i = \frac{n_{di}}{n_i}$$

 n_d

Collection efficiency

electrons into the hole

generated electrons

Extraction efficiency

- # electrons from the hole
- # electrons in the avalanche

schematic view of the electron flow and ion back flow through a GEM hole

02 Simulation study methods: Drift

- position z dependence of shift&spread (trajectory position deviation/diffusion of electron end points) of electrons moving in electric-magnetic fields (no magnetic fields-->shift is almost zero)
- independent variable z-->dependent variable x/y/t/e distribution-->shift&spread $(\mu_x, \mu_y, \mu_t, E, \sigma_x, \sigma_y, \sigma_t, \sigma_E \sim z)$

02 Simulation study methods: **STEPS**

02 Simulation study methods: GEM models

Structure schematic and design parameters of triple- and quadruple-GEM

width of rim

0µm

02 Simulation study methods: Hole alignment

Aligned or mis-aligned hole position between different GEM foils

02 Simulation study methods: Voltage setting

F

	quadruple GEM		triple-GEM
	4/1.voltage/V	4/2.voltage/V	3/1.voltage/V
drift electrode	А	В	С
GEM1 top	6/7*A	4200	9/11*C
GEM1 bottom	5.5/7*A	3850	8/11*C
GEM2 top	4.5/7*A	3150	6/11*C
GEM2 bottom	4/7*A	2800	5/11*C
GEM3 top	3/7*A	2100	3/11*C
GEM3 bottom	2.5/7*A	1750	2/11*C
GEM4 top	1.5/7*A	1050	/
GEM4 bottom	1/7*A	350	/
readout electrode	0	0	0

$E_d = (B-4200) \times 10/(4.8 \times 1000) \text{kV/cm}$

 $\Delta V_{4GEM-single} = A*1/14$ $\Delta V_{3GEM-single} = C*1/11$

03 Simulation results: Electric field calculation

Unit model of triple-GEM(aligned holes) and quadruple-GEM (aligned and misaligned holes)

the contour plot of triple GEM electric potential

the contour plot of quadruple GEM electric potential

03 Simulation results: Time resolution

03 Simulation results: Time resolution

20

03 Simulation results: Time resolution

★ Simulated electronics noise (~10ns) has been added into simulation results. Error bars are not shown in this figure.

★ The simulation results are somewhat close to the experimental results.

21

03 Simulation results: Spatial resolution

- At very low voltage, the spatial resolutions calculated by method one are poor and has large fluctuations,
- At very high voltage, quadruple-GEM's has worse spatial resolution. .

03 Simulation results: Spatial resolution

- At very low voltage, the spatial resolutions are poor and has large fluctuations,
- At very high voltage, the spatial resolutions of hole mis-alignment model (1) are somewhat better than model (2), spatial resolutions in y are better than in x direction.

2020/11/6

03 Simulation results: Spatial resolution

- At very low voltage
 → poor spatial resolution + large fluctuations
- At very high voltage

 → aligned model < model① < model②
 → y position < x position

03 Simulation results: Effective gain

- electronegative gas \rightarrow effective gain decreases
- aligned or mis-aligned hole layouts has almost no effect on gain.
- a magnitude difference between the simulation and experiment results is observed.

03 Simulation results: Effective gain

Step by step multi-GEM parameterized simulation technique(STEPS) method:

03 Simulation results: Transparency

Transparency of the GEM foil contain 2 parts:

- how many electrons can be collected by the holes
- how many electrons can be extracted out of the holes

$$Coll. = \begin{cases} 0.016 \times \left(\frac{E_{ext}}{E_{hole}}\right)^{-2.03}, \frac{E_{ext}}{E_{hole}} > 0.016^{\frac{1}{2.03}}\\ 0.016^{\frac{1}{2.03}}, \frac{E_{ext}}{E_{hole}} \le 0.016^{\frac{1}{2.03}} \end{cases}$$

$$Extr. = \begin{cases} \frac{0.016}{0.22} \times \left(\frac{E_{ext}}{E_{hole}}\right)^{1-2.03}, \frac{E_{ext}}{E_{hole}} > 0.016^{\frac{1}{2.03}}\\ \frac{1}{0.22} \times \left(\frac{E_{ext}}{E_{hole}}\right), \frac{E_{ext}}{E_{hole}} \le 0.016^{\frac{1}{2.03}} \end{cases}$$

- figure shows how the electron transparency of one GEM foils change with electric field ratio;
- E_{ext} is the electric field strength outside the holes/E_{hole} is the field strength inside the holes;
- transparency is the product of collection and extraction efficiency.

03 Simulation results: Drift

variation of shift x&y/spread $\sigma_x \& \sigma_y$ as a function of z position

2020/11/6

04 <u>Summary</u> and outlook

- We have studied triple-GEM and quadruple-GEM with aligned and misaligned hole positions at various voltage settings, simulated the primary ionization, drift, diffusion, avalanche multiplication and induction signal readout process.
- Calculation methods of various performance characteristics have been researched: time/spatial/energy resolutions, effective gain, electron transparency, Ion Back Flow ratio, drift properties, transport parameters
- Simulation results of some performance characteristics of quadruple-foils GEM detector were obtained, various comparisons have been performed:
 - between triple-GEM and quadruple-GEM;
 - > between hole aligned model and two different misalignment models of quadruple-GEM;
 - between simulation and experiment results of triple-GEM and quadruple-GEM.

✓ Time resolution:

the simulation results are consistent with experiment. Quadruple-GEM has somewhat worse time resolution compared with the triple-GEM at present detector structure model.

✓ Spatial resolution:

at higher voltage the simulation results are consistent with experiment. Quadruple-GEM have worse spatial resolution than triple-GEM at present detector structure model. No obvious difference was observed for the three hole alignment models.

✓ Effective gain:

electronegative gas causes the decrease of effective gain. Results of three quadruple-GEM hole alignment models are similar. There is a magnitude difference between simulation and experiment results using the full simulation method .The STEPS method gives more consistent results with the experiment.

- To optimize the calculation methods and increase the statistics to improve the GEM performance simulations, research and understand the reason of the differences between experiment and simulation (as in effective gain);
- To carry out simulation study of other performance characteristics such as energy resolution / IBF..., and to research the analysis strategy of more performance characteristic -s such as charging-up/discharge...
- More simulations on different detector layouts, to identify the key factors which may have major influences on the performances, and to optimize quadruple-foils GEM structure design;
- Study the performance characteristics of other MPGD technique, such as resistive electrodes...

Thank you~

References

[1] Patra R N, Singaraju R N, Biswas S, et al. Characteristic study of a quadruple GEM detector and its comparison with a triple GEM detector[J]. Nuclear Instruments & Methods in Physics Research, 2018, 906(OCT.21):37-42.

[2] R. N. Patra et al., Measurement of basic characteristics and gain uniformity of a triple GEM detector, Nucl. Instr. and Meth. A.862 (2017) 25.

[3] A Colaleo, A Safonov, A Sharma et al. "CMS Technical Design Report for the Muon Endcap GEM Upgrade". 2015.

* All the experiment figures in these steps are obtained from the ALICE TPC 4-layer-GEM detector model(5200V, Ar:CO2=70:30)