

Search for the doubly heavy baryon Ξ_{bc}^{0} via decays to $D^{0}pK^{-}$

Xiang Zhiyu (on behalf of LHCb collaboration) November 6, 2020 6th China LHC Physics Workshop

Outline

- Introduction
- Theoretical prediction
- LHCb detector and data-taking
- Event selection
- Control mode
- Results

Introduction

• Huge double-charm, *B_c* events @ LHCb

• Ξ_{bc} (*bcq*) also at horizon?

Prediction: mass & lifetime

• Predicted Ξ_{bc}^{0} mass ~6.9 GeV

Reference	Value (MeV)	Method	Phys Rev D 90 094007 (2014)
Present work	6914 ± 13		<u>11193. Nev. D 30, 034007 (2014)</u>
[25]	6916 ± 139	QCD-motivated quark model	
[28]	6938	QCD-motivated quark model	
[44]	6930	Potential models	
[46]	6990 ± 90	Feynman-Hellmann + semi-empirical formulas	
[47]	7029	Mass sum rules	
[48]	6950	Relativistic quasipotential quark model	
[49]	6915	Three-body Faddeev equations.	
[52]	6820 ± 50	Potential approach and QCD sum rules	
[53]	6960	Nonperturbative string	
[54]	6933	Relativistic quark-diquark	
[55]	6800	Bag model	
[58]	6919	Variational	
[59]	7011	Quark model	
[60]	6789	Coupled channel formalism	
[61]	6840 ± 10	Instantaneous approx. $+$ Bethe-Salpeter	
[62]	6750 ± 50	QCD sum rules	

• Predicted Ξ_{bc}^{0} lifetime 100~500 fs

	(93, 118)	Phys. Rev. D 99, 073006 (2019)
	93	Phys. Rev. D 90, 094007 (2014)
fs]	260	arXiv:9912425
	270 <u>±</u> 30	<u>Eur. Phys. J. C 16, 461 (2000)</u>
	280 <u>±</u> 70	<u>Phys. Usp. 45, 455 (2002)</u>
	$510 \pm 9 ~(\sim B_c^+)$	<u>Nucl. Phys. B 440, 251 (1995)</u>
		Xiang Zhiyu (UCAS)

Prediction: cross-section

• $\sigma(bc) = 39 \text{ nb} @ 14 \text{ TeV} \text{ in LHCb} PRD 83 (2011) 034026}$

[nh]			LHC (CM	LHCb	
נמחן	$p_{T \text{cut}}/y_{\text{cut}}$ or η_{cut}	NO-cut	y < 1.5	y < 2.5	$1.9 < \eta < 4.9$
$(bc)_{\bar{3}}[{}^3S_1]$	0 GeV	47.24	21.70	33.43	25.85
	2.5 GeV	36.55	16.92	26.04	19.17
	4.0 GeV	24.92	11.70	17.95	12.34
$(bc)_{6}[{}^{1}S_{0}]$	0 GeV	11.55	5.259	8.112	6.250
	2.5 GeV	9.255	4.243	6.537	4.822
	4.0 GeV	6.607	3.067	4.713	3.269
$(bc)_{6}[^{3}S_{1}]$	0 GeV	70.67	31.80	49.19	38.89
	2.5 GeV	54.29	24.65	38.07	28.74
	4.0 GeV	36.59	16.85	25.97	18.36
$(bc)_{\bar{3}}[^{1}S_{0}]$	0 GeV	12.46	5.794	8.909	6.788
	2.5 GeV	9.802	4.591	7.049	5.111
	4.0 GeV	6.855	3.248	4.975	3.377

• σ_{total} for $p_{\text{T}} > 4 \text{ GeV } \& |y| < 1.5, \ \sigma(\Xi_{bc}): \sigma(\Xi_{cc}) \sim 1:2.5$

	Ξ_{cc}		Ξ_{bc}		Ξ_{bb}	
[nb]	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$	$\sqrt{S} = 7.0 \text{ TeV}$	$\sqrt{S} = 14.0 \text{ TeV}$
$[{}^{3}S_{1}]$	38.11	69.40	16.7	28.55	0.503	1.137
$[{}^{1}S_{0}]$	9.362	17.05	3.72	6.315	0.100	0.226
Total	47.47	86.45	20.42	34.87	0.603	1.363

• Fragmentation fraction, $u: d: s \sim 1: 1: 0.3$

$$\sigma(\Xi_{bc}^+) = \sigma(\Xi_{bc}^0) \sim 17 \text{ nb}, \sigma(\Omega_{bc}^0) \sim 5 \text{ nb}$$

Xiang Zhiyu (UCAS)

Prediction: branching fraction

- Semi-leptonic decay Eur. Phys. J. C 80, 568 (2020), Eur. Phys. J. C 80, 320 (2020) e.g. $\Xi_{hc}^{0} \rightarrow \Xi_{h}^{-}l^{+}v_{l}$, $\mathcal{B} \sim 10^{-2}$; $\Xi_{hc}^{0} \rightarrow \Xi_{cc}^{+}l^{-}\bar{v}_{l}$, $\mathcal{B} \sim 10^{-2}$
- Weak scattering *Phys. Lett. B* 767, 232 (2017), *Phys. Usp.* 45, 455 (2002) *e.g.* $\Xi_{bc}^{0} \rightarrow pK^{-}$, $\mathcal{B} \sim 10^{-7 \sim -8}$; $\Xi_{bc}^{0} \rightarrow D^{0}pK^{-}$, $\mathcal{B} \sim 10^{-3}$
- Charged current by *c* Eur. Phys. J. C 77, 781 (2017)

e.g.
$$\Xi_{bc}^{0} \to \Xi_{b}^{-} \rho^{+}$$
, $\mathcal{B} \sim 10^{-1}$; $\Xi_{bc}^{0} \to \Xi_{b}^{-} \pi^{+}$, $\mathcal{B} \sim 10^{-2}$

- Charged current by $b \xrightarrow{Phys. Rev. D 62, 054021 (2000)}$
 - $e.g. \quad \Xi_{bc}^{0} \to \Xi_{cc}^{+} \rho^{-} , \mathcal{B} \sim 10^{-2} \quad ; \quad \Xi_{bc}^{0} \to \Xi_{cc}^{+} \pi^{-} , \mathcal{B} \sim 10^{-2}$
- FCNC Phys. Rev. D 98, 056002 (2018)

e.g. $\Xi_{bc}^{0} \to \Xi_{c}^{0} l^{+} l^{-}$, $\mathcal{B} \sim 10^{-8}$; $\Xi_{bc}^{0} \to \Sigma_{c}^{0} l^{+} l^{-}$, $\mathcal{B} \sim 10^{-9}$

 $\stackrel{_\sim}{\simeq}$ Search for $\Xi_{bc}^0 \to (D^0 \to K^- \pi^+) p K^-$, $\mathcal{B}_{\rm total} {\sim} 10^{-5} - 10^{-4}$

LHCb detector and data-taking

• Acceptance $2 < \eta < 5$, with excellent vertexing, tracking, PID

• Run1 (2011-2012):

 $1 \text{ fb}^{-1} @\sqrt{s} = 7 \text{ TeV}, 2 \text{ fb}^{-1} @\sqrt{s} = 8 \text{ TeV}$

• Run2 (2011-2012):

 $5.9 \text{ fb}^{-1} @\sqrt{s} = 13 \text{ TeV}$

Searching for $\Xi_{bc}^0 \longrightarrow D^0 p K^-$

- Analysis blind in 6.7~7.2 GeV/ c^2
- Observation
 - measure mass
- No observation
 - setting upper limit of production ratio with 2016, 2017 and 2018 data

$$R \equiv \frac{\sigma(\Xi_{bc}^{0})B[\Xi_{bc}^{0} \rightarrow D^{0}pK^{-}]}{\sigma(\Lambda_{b}^{0})B[\Lambda_{b}^{0} \rightarrow D^{0}pK^{-}]} = \frac{N_{\text{sig}}/\varepsilon_{\text{sig}}}{N_{\text{con}}/\varepsilon_{\text{con}}}$$

- fiducial range: $5 < p_{\rm T} < 25 \, {\rm GeV}/c$, 2.0 < y < 4.5
- quote *R* on Ξ_{bc}^{0} lifetime $\tau = 100, 200, 300, 400, 500$ fs
- In simulation: $m \sim 6.9 \text{ GeV}/c^2$, $\tau \sim 400 \text{ fs}$

 D^0

₹W

 Ξ_{bc}^0 d

Candidate selection

- Expecting large hadronic backgrounds, a MVAbased "online" pre-selection applied
- All final states
 - large p_{T}
 - tight PID required
- D^0
 - large p_{T}
 - good end vertex quality
 - has fly distance
 - Δm from PDG < 25 MeV
- Ξ_{bc}^0
 - good end vertex quality

The machine learning

- Multivariate selector further explores
 - decay fit quality
 - kinematics & PID of final states
 - Ξ_{bc}^{0} vertex separation from PV
- Selector optimized using simulated decays for signal and backgrounds from far upper sideband
 - good performance
 - no obvious overtraining

Control mode $\Lambda_b^0 \longrightarrow D^0 p K^-$

- Same selection with signal mode
- Tighter PID for $K(\Lambda_b^0)$ to suppress CF $\Lambda_b^0 \rightarrow D^0 p \pi^-$
- Obtained about 400 Λ_b^0 candidates for each year

Efficiency on Ξ_{bc}^{0} lifetime hypotheses

• To mimic different lifetime hypotheses t, perevent weight is assigned as $w(t) = \frac{\frac{1}{\tau} \exp(-\frac{t}{\tau})}{\frac{1}{\tau_0} \exp(-\frac{t}{\tau_0})}$, where $\tau_0 = 400$ fs

• Efficiency strongly depends on the lifetime $\tau(\Xi_{hc}^0)$

Efficiency on Ξ_{bc}^{0} mass hypotheses

- Generator level MC with 6.7, 6.9, 7.1 GeV/ c^2 hypotheses
- Reweighting full simulated sample according generator level daughters' $p_{\rm T}$ differences with other mass hypotheses
- Efficiency depends weakly on $m(\Xi_{bc}^{0})$

13

Results

- With 2016, 2017 and 2018 LHCb datasets
- Not observe significant Ξ_{bc}^{0} signal, setting upper limit
- *R* varying from 3.0×10^{-1} to 1.7×10^{-2} @ $\tau(\Xi_{bc}^{0}) = 100 \sim 500$ fs

Summary

- First search for the Ξ_{bc}^0 baryon with $\Xi_{bc}^0 \rightarrow D^0 p K^-$
- No significant signal is observed
- Upper limit on the ratio of production crosssection times branching fraction to Λ_b^0 is set
- Lots of efforts from LHCb-China group on the doubly heavy baryon studies

Thanks for your attention!

Backup

MVA input variables

Control mode $\Lambda_b^0 \longrightarrow D^0 p K^-$

18