

Cross section measurements in H->4l channel at CMS

Qianying GUO

(Institute of High Energy Physics, Beijing && Beihang University)

On behalf of CMS collaboration

The 6th China LHC Physics Workshop (CLHCP2020)

σ(pp WH (NNLO QCD + NLO EW) 10^{-1} 10^{-2} _14 15 6 8 13 9 10 12 11 √s [TeV] **LHCHXSWG** Higgs BR + Total Uncert ww HCH gg 77 сī Zγ 10⁻³ 10⁻⁴∟ 80 100 120 140 160 180 200 M_H [GeV]

(N3LO QCD + NLO EW)

(NNLO QCD + NLO EW)

M(H)= 125 GeV

¹0² [qd] (X+H ←

□ 4l channel is one of the most important channel for Higgs boson search

- A large signal-to-background ratio
- Complete reconstruction of final state decay products
- Excellent lepton momentum reconstruction

Objects

Selected electrons

- Loose electrons
 - $P_T > 7 \text{GeV}; |\eta| < 2.5$
 - $d_{xy} < 0.5 \ cm; \ d_z < 1 \ cm; SIP_{3D} < 3$
- BDT ID+Iso in 6 ($|\eta|$, P_T)bins
- Reduction of fakes for same signal efficiency when witch from TMVA(V1) to **xgboost**(V2) library for BDT training

➢ FSR photon

- $P_{T,\gamma} > 2 \text{ GeV;} |\eta^{\gamma}| < 2.4; \text{relPFIso} < 1.8$
- Electron SC veto by PF reference
- Associated γ to the closest loose lepton
- $\Delta R(\gamma, l) < 0.5; \frac{\Delta R(\gamma, l)}{E_{T,\gamma}^2} < 0.012;$ choose photon with lowest $\frac{\Delta R(\gamma, l)}{E_{T,\gamma}^2}$
- Remove selected FSRs from lepton isolation cone for all loose leptons

➢ JETS

- AK4 PFCHs jets
- P_T > 30 GeV; $|\eta|$ < 4.7; Tight PF jet ID
- Cleaned $\Delta R(jet, l/\gamma) > 0.4$
- Tight PU Jet ID
- B-tagger:
 - DeepCSV medium WP
 - B-tagging SF applied

Selected muons

- Loose muons
 - $P_T > 5 \text{GeV}; |\eta| < 2.4$
 - $d_{xy} < 0.5 \ cm; \ d_z < 1 \ cm; SIP_{3D} < 3$
- PF μ ID and tracker high P_T ID
- RelPFIso($\Delta R = 0.3$) < 0.35

Event reconstruction and selections

• Z candidate

- Any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120$ GeV
- Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z_1 candidate with $m_{ll(\gamma)}$ closest to the POG m(Z) mass
 - $m_{Z1} > 40 \text{ GeV}; P_T(l1) > 20 \text{ GeV}; P_T(l2) > 10 \text{ GeV}$
 - $\Delta R > 0.02$ between each of the four leptons
 - $m_{ll} > 4$ GeV for OS pairs (regardless of flavour)
 - Reject 4 μ and 4e candidates where the alternative pair Z_aZ_b satisfies $|m_{Z_a}-m_Z|<|m_{Z_1}-m_Z|$ and $m_{Z_b}<12~{\rm GeV}$
 - $m_{4l} > 70 {
 m ~GeV}$
- If more than one ZZ candidate is left, choose the one of highest \mathcal{D}_{bkg}^{kin} .
- If \mathcal{D}_{bkg}^{kin} is the same, take the one with Z_1 mass closest to m_{Z_1}

Observables

- Two observables used: m₄₁; kd
- Three different kd discriminant applied.
 - Discriminant sensitive to gg/ $q\bar{q} \rightarrow 4l$ kinematics

$$\mathcal{D}_{bkg}^{kin} = \left[1 + rac{\mathcal{P}_{bkg}^{q\overline{q}}(ec{\Omega}^{\mathrm{H}
ightarrow 4\ell} | m_{4\ell})}{\mathcal{P}_{sig}^{gg}(ec{\Omega}^{\mathrm{H}
ightarrow 4\ell} | m_{4\ell})}
ight]^{-1}$$
 (1)

- Dedicated production-dependent \mathcal{D}_{kgd} discriminants used in VBF-2jet tagged and hadronic VH tagged categories
- Four discriminants calculated are used to enhance the purity of event categories

Event categorization – Stage0

 Selected events are classified into seven exclusive categories to improve the sensitivity to the Higgs boson production mechanisms.

- VBF-2jet-tagged category requires exactly 4 leptons. In addition there must be either 2 or 3 jets of which at most 1 is b-tagged, or at least 4 jets and no b-tagged jets. Finally, $D_{2jet} > 0.5$ is required.
- VH-hadronic-tagged category requires exactly 4 leptons. In addition there must be 2 or 3 jets, or at least 4 jets and no b-tagged jets. Finally, $D_{VH} > 0.5$ is required.
- VH-leptonic-tagged category requires no more than 3 jets and no b-tagged jets in the event, and exactly 1 additional lepton or 1 additional pair of opposite sign same flavor leptons. This category also includes events with no jets and at least 1 additional lepton.
- tīH-hadronic-tagged category requires at least 4 jets of which at least 1 is b-tagged and no additional leptons.
- tīH-leptonic-tagged category requires at least 1 additional lepton in the event.
- **VBF-1jet-tagged category** requires exactly 4 leptons, exactly 1 jet and $D_{1jet} > 0.7$.
- Untagged category consists of the remaining events.

Event categorization -- STXS1.1 bins

- The events are further binned within ggH, VBF, and VH in order to study deeper structure within each production mechanisms. (10+6+2+1)
- The primary goals of the STXS framework are to maximize the sensitivity of the measurements while at the same time to minimize their dependence on the theory predictions.

Event categorization -- STXS1.1 categories

• Untagged, VBF-2jet-tagged, VH-had-tagged, VH-lep-tagged category are further split. 22 sub-categories are designed to match the STXS Bins defined.

• Untagged category:

- 1. ggH/pT>200: the Higgs boson has $p_{\rm T}^{\rm H}$ > 200 GeV;
- 2. ggH-0j/pT[0,10]: 0 jet reconstructed and 0 < $p_{\rm T}^{\rm H}$ < 10 GeV;
- 3. ggH-0j/pT[10-200]: 0 jet reconstructed and $10 < p_{\rm T}^{\rm H} < 200 \,{\rm GeV}$;
- 4. ggH-1j/pT[0-60]: 1 jet reconstructed and $0 < p_{\rm T}^{\rm H} < 60 \,{\rm GeV}$;
- 5. ggH-1j/pT[60-120]: 1 jet reconstructed and $60 < p_{\rm T}^{\rm H} < 120 \,{\rm GeV}$;
- 6. ggH-1j/pT[120-200]: 1 jet reconstructed and $120 < p_{\rm T}^{\rm H} < 200 \,{\rm GeV}$;
- 7. ggH-2j/mJJ>350: 2 jets reconstructed and m_{jj} > 350 GeV;
- 8. ggH-2j/pT[0-60]: 2 jets reconstructed, $0 < p_T^H < 60$ GeV, and $m_{jj} < 350$ GeV;
- 9. ggH-2j/pT[60-120]: 2 jets reconstructed, 60 < $p_{\rm T}^{\rm H}$ < 120 GeV, and m_{jj} < 350 GeV;
- 10. ggH-2j/pT[120-200]: 2 jets reconstructed, $120 < p_T^H < 200 \text{ GeV}$, and $m_{jj} < 350 \text{ GeV}$.

Event categorization -- STXS1.1 categories

- Untagged, VBF-2jet-tagged, VH-had-tagged, VH-lep-tagged category are further split. 22 sub-categories are designed to match the STXS Bins defined.
- VBF-1jet-tagged category: VBF-1j
- VBF-2jet-tagged category:
 - 1. VBF-2j/pT>200: $p_{\rm T}^{\rm H}$ > 200 GeV and m_{jj} > 350 GeV;
 - 2. VBF-2j/mJJ[350,700]: $p_T^H < 200 \text{ GeV}$, $p_T^{Hjj} < 25 \text{ GeV}$, and $350 < m_{jj} < 700 \text{ GeV}$;
 - 3. VBF-2j/mJJ>700: $p_{\rm T}^{\rm H}$ < 200 GeV, $p_{\rm T}^{\rm Hjj}$ < 25 GeV, m_{jj} > 700 GeV;
 - 4. VBF-3j/mJJ>350: $p_{\rm T}^{\rm H} < 200 \,{\rm GeV}, \, p_{\rm T}^{Hjj} > 25 \,{\rm GeV}, \, m_{jj} > 350 \,{\rm GeV};$
 - 5. VBF-rest: if not above.
- VH-hadronic-tagged category
 - 1. VH-had/mJJ[60-120]: $60 < m_{jj} < 120 \,\text{GeV};$
 - 2. VH-rest: not above.
- VH-leptonic-tagged category
 - 1. VH-lep/pT[0-150]: $p_{\rm T}^{\rm H} < 150 \,{\rm GeV};$ 2. VH-lep/pT>150: $p_{\rm T}^{\rm H} > 150 \,{\rm GeV}.$
- ttH-hadronic-tagged category: ttH-had.
- ttH-leptonic-tagged category: ttH-lep.

Event categorization – Stage1.1

Signal fraction

 Signal relative purity of the 22 event sub-categories in terms of the STXS Stage 1.1 Bins in a 118 < m4l < 130 GeV mass window.

Background estimation

- Irreducible background
 - Production of ZZ via $q\bar{q}$ annihilation or gluon fusion
 - Estimated using simulation
- Two dependent methods used to estimated Z+X background: OS and SS
- Fake rates calculated in Z+l control region
- Z+X yields estimated in 2 orthogonal regions of Z+II control region
- Final estimate combination of 2 methods

- Reducible background
 - Secondary leptons produced by heavy-flavor jets
 - Misidentified as leptons from decay of heavy-flavor hadron, in-flight decays of light mesons within jets, or (for electrons) decay of charged hadrons overlapping with π^0 decays.

(Main prosesses of producting these background: <u>Z+jets</u>, $t\bar{t}$ +jets, $Z\gamma$ +jets, WW+jets, WZ+jets)

Channel	4e	4μ	2e2µ	4ℓ	
$q\bar{q} \rightarrow ZZ$	333^{+57}_{-53}	622^{+31}_{-44}	815 ± 73	1770^{+98}_{-101}	
$gg \rightarrow ZZ$	$75.1^{+14.3}_{-13.5}$	$116.6^{+11.7}_{-12.8}$	176.9 ± 23.0	$368.5^{+29.5}_{-29.6}$	
Z + X	19.3 ± 7.2	50.8 ± 15.2	64.6 ± 15.6	134.7 ± 22.9	
Sum of backgrounds	$428^{+59.2}_{55.2}$	$790^{+36.4}_{-48.3}$	1057 ± 78.1	$2274\substack{+104.9\\-107.7}$	
Signal ($m_{\rm H} = 125$ GeV)	$19.6^{+3.3}_{-3.1}$	$40.8\substack{+2.5\-2.9}$	50.7 ± 5.6	$111.1_{-7.0}^{+6.9}$	
Total expected	$447^{+59.3}_{55.2}$	$830_{-48.4}^{+36.5}$	1108 ± 78.3	$2385^{+105.1}_{-107.9}$	
Observed	462	850	1130	2442	

Systematics Uncertainties

- The experimental uncertainties
 - depending on the year of data taking
 - Integrated luminosity
 - Lepton identification and reconstruction efficiency
- Theoretical uncertainties
 - renormalization and factorization scale and choice of PDF set
- In combination of the three-year data, the theoretical uncertainties and experimental ones related to leptons or jets are treated as correlated while all other ones from experimental sources are taken as uncorrelated.

	2016	2017	2018
Luminosity	2.6%	2.3%	2.5%
Lepton eff.	2.5 – 9%	3 - 12.5%	2.2 - 16.1%

Summary of inclusive theory uncertainties									
$BR(H\toZZ\to4\ell)$	2 %								
QCD scale ($q\bar{q} \rightarrow ZZ$)	+3.2/-4.2 % %								
PDF set ($q\bar{q} \rightarrow ZZ$)	+3.1/-3.4 %								
Electroweak corrections ($q\bar{q} \rightarrow ZZ$)	\pm 0.1 %								

Signal Strength – Production Models

- Perform multidimensional maximum likelihood fit to (m_{4l}, KD) templates in 66channels (3×22)
- Total PDF is defined as: $\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{bkg}^{kin}) = \mathcal{L}(m_{4\ell})\mathcal{L}(\mathcal{D}_{bkg}^{kin}|m_{4\ell}).$

Fiducial/Differential Cross Section

• This measurement has minimal dependence on the assumptions of the relative fraction or kinematic distributions of the separate production modes.

Requirements for the ${ m H} ightarrow 4\ell$ fiducial phase space									
Lepton kinematics and isolation									
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20 \ \mathrm{GeV}$								
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10~\mathrm{GeV}$								
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) \; { m GeV}$								
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$								
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{ m T}$								
Event topology									
Existence of at least two same-flavor OS lepton pairs, where leptons	satisfy criteria above								
Inv. mass of the Z_1 candidate	$40 {\rm GeV} < m_{Z_1} < 120 {\rm GeV}$								
Inv. mass of the Z_2 candidate	$12 { m GeV} < m_{Z_2}^2 < 120 { m GeV}$								
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$								
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4{ m GeV}$								
Inv. mass of the selected four leptons	$105{\rm GeV} < m_{4\ell} < 140{\rm GeV}$								

Signal process	$ \mathcal{A}_{ ext{fid}} $	e	f _{nonfid}	$(1+f_{\text{nonfid}})\epsilon$					
Individual Higgs boson production modes									
$gg \rightarrow H$ (powheg)	0.402 ± 0.001	0.592 ± 0.002	0.053 ± 0.001	0.624 ± 0.002					
VBF (POWHEG)	0.444 ± 0.002	0.605 ± 0.003	0.043 ± 0.001	0.631 ± 0.003					
WH (POWHEG+MINLO)	0.325 ± 0.002	0.588 ± 0.003	0.075 ± 0.002	0.632 ± 0.004					
ZH (POWHEG+MINLO)	0.340 ± 0.003	0.594 ± 0.005	0.081 ± 0.004	0.643 ± 0.006					
ttH (POWHEG)	0.314 ± 0.003	0.585 ± 0.006	0.169 ± 0.006	0.684 ± 0.007					

$$\begin{split} N_{\text{obs}}^{\text{f},i}(m_{4\ell}) &= N_{\text{fid}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonfid}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonres}}^{\text{f},i}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i}(m_{4\ell}) \\ &= \epsilon_{i,j}^{\text{f}} \cdot \left(1 + f_{\text{nonfid}}^{\text{f},i}\right) \cdot \sigma_{\text{fid}}^{\text{f},j} \cdot \mathcal{L} \cdot \mathcal{P}_{\text{res}}(m_{4\ell}) \\ &+ N_{\text{nonres}}^{\text{f},i} \cdot \mathcal{P}_{\text{nonres}}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i} \cdot \mathcal{P}_{\text{bkg}}(m_{4\ell}), \end{split}$$

 $\sigma_{fid.} = 2.73^{+0.30}_{-0.29} = 2.73^{+0.23}_{-0.22} (stat.)^{+0.24}_{-0.19} (syst.) fb$

 $\sigma_{fid}^{SM} = 2.76 \pm 0.14 fb$

Fiducial/Differential Cross Section

- •The measured inclusive fiducial cross section in different final states and as a function of \sqrt{s} . (left)
- •Differential cross sections as a function of the $p_{\rm T}$ and rapidity of the H boson, the number of associated jets, and the $p_{\rm T}$ of the leading associated jet are determined. (right)

•The sub-dominant component of the the signal (VBF + VH + tt ⁻H) is denoted as XH.

Measured total $\sigma(pp \rightarrow ZZ)$ cross section

- Based on similar event selection, the total cross section of pp -> ZZ is measured with 2017 and 2018 data, combining with previous 2016 results.
- $\sigma_{tot}(pp
 ightarrow ZZ)$ = 17.1 \pm 0.3 (stat) \pm 0.4 (syst) \pm 0.4 (theo) \pm 0.3 (lumi) pb

Year	Total cross section, pb
2016 [5]	$17.5^{+0.6}_{-0.5} ext{(stat)}\pm0.6 ext{(syst)}\pm0.4 ext{(theo)}\pm0.4 ext{(lumi)}$
2017	16.8 ± 0.5 (stat) ± 0.5 (syst) ± 0.4 (theo) ± 0.4 (lumi)
2018	16.8 ± 0.4 (stat) ± 0.6 (syst) ± 0.4 (theo) ± 0.4 (lumi)
Combined	17.1 ± 0.3 (stat) ± 0.4 (syst) ± 0.4 (theo) ± 0.3 (lumi)

Fiducial phase space for ZZ -> 41	
Lepton kinematics and isolation	
Leading lepton pT Next-to-leading lepton pT Additional electrons (muons) pT Pseudorapidity of electrons (muons)	$\begin{array}{l} p_{T} > 20 \; GeV \\ p_{T} > 10 \; GeV \\ p_{T} > 5 \; GeV \\ \eta < 2.5 \end{array}$
Event topology	
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above Inv. mass of the Z1 candidate Inv. mass of the Z2 candidate Inv. mass of any opposite sign lepton pair Inv. mass of the selected four leptons	60GeV <mz1, mz2<120gev<br="">Δm_{1+1'-}>4GeV</mz1,>

CMS SMP-19-001

Conclusion

- Several measurements of Higgs boson production in four-lepton final state at $\sqrt{s} = 13TeV$ are presented, using data sample corresponding to an integrated luminosity of 137.1 fb⁻¹.
 - It is the STXS measurement of so-called stage 1.1. For the paper, it is updated with stage1.2.
 - New observables and improved bins are applied for differential XS. For further study, additional theoretical prediction(s) and more observables will be studied.
- Measured cross section of pp -> ZZ process is 17.1 ± 0.3 (stat) ± 0.4 (syst) ± 0.4 (theo) ± 0.3 (lumi) pb when combining 3-year data.
- All results are consistent, within their uncertainties, with the expectations for the Standard Model H boson.

Backup

Distribution of Z_1 and Z_2

Distribution of m_{41} of Run-2 data

Distribution of discriminant

Category discriminant

Kinematic discriminant

Correlation matix of the fitted signal strengths of Stage1.1 bins

Expected Yields

Event	Signal					Total Background			Total	Observed			
category	ggH	VBF	WH	ZH	ttH	bbH	tqH	signal	$q\bar{q} \rightarrow ZZ$	$gg \rightarrow ZZ$	Z + X	expected	obberreu
ggH-0j/pT[0,10]	25.3	0.08	0.02	0.02	0.00	0.14	0.00	25.6	26.5	0.97	1.19	54.2	61
ggH-0j/pT[10-200]	86.8	1.69	0.54	0.86	0.00	0.90	0.00	90.8	35.4	3.79	15.5	145	153
ggH-1j/pT[0-60]	26.2	1.43	0.50	0.45	0.01	0.43	0.01	29.1	10.3	1.19	5.54	46.1	40
ggH-1j/pT[60-120]	12.4	1.24	0.45	0.47	0.01	0.10	0.01	14.6	2.76	0.16	3.21	20.8	17
ggH-1j/pT[120-200]	3.31	0.62	0.17	0.26	0.00	0.02	0.00	4.38	0.38	0.00	0.52	5.28	6
ggH-2j/pT[0-60]	3.68	0.29	0.14	0.14	0.06	0.09	0.02	4.42	0.97	0.15	2.07	7.60	9
ggH-2j/pT[60-120]	5.17	0.54	0.22	0.22	0.09	0.04	0.02	6.30	0.84	0.07	1.86	9.06	12
ggH-2j/pT[120-200]	2.90	0.40	0.15	0.17	0.07	0.01	0.02	3.71	0.26	0.00	0.40	4.37	5
ggH/pT>200	2.72	0.65	0.21	0.24	0.06	0.01	0.02	3.91	0.16	0.00	0.21	4.28	2
ggH-2j/mJJ>350	0.82	0.17	0.06	0.05	0.04	0.01	0.01	1.16	0.16	0.02	0.65	1.98	3
VBF-1j	14.2	2.94	0.20	0.18	0.00	0.12	0.01	17.6	2.37	0.43	1.05	21.5	20
VBF-2j/mJJ[350,700]	0.80	1.11	0.01	0.01	0.00	0.01	0.00	1.95	0.08	0.02	0.04	2.09	2
VBF-2j/mJJ>700	0.43	1.80	0.00	0.00	0.00	0.00	0.00	2.25	0.02	0.01	0.03	2.31	2
VBF-3j/mJJ>350	2.43	2.15	0.06	0.07	0.02	0.03	0.05	4.81	0.24	0.06	0.96	6.07	6
VBF-2j/pT>200	0.42	0.76	0.01	0.01	0.01	0.00	0.01	1.22	0.01	0.00	0.03	1.26	0
VBF-rest	2.40	0.87	0.11	0.10	0.03	0.04	0.01	3.56	0.34	0.06	0.74	4.70	2
VH-lep/pTV[0-150]	0.24	0.04	0.71	0.25	0.08	0.02	0.02	1.37	0.82	0.14	0.40	2.72	5
VH-lep/pTV>150	0.02	0.01	0.21	0.08	0.04	0.00	0.01	0.36	0.01	0.00	0.02	0.40	0
VH-had/mJJ[60-120]	4.11	0.25	1.01	1.20	0.11	0.07	0.02	6.77	0.70	0.05	1.36	8.89	8
VH-rest	0.56	0.04	0.08	0.07	0.03	0.00	0.00	0.77	0.08	0.00	0.15	1.01	1
ttH-had	0.19	0.05	0.03	0.06	0.82	0.01	0.03	1.19	0.01	0.00	0.45	1.66	2
ttH-lep	0.02	0.00	0.02	0.02	0.60	0.00	0.03	0.70	0.03	0.00	0.12	0.85	0

Distributions of the expected and observed number of events for all Stage 1.1 sub-categories

Mass region $118 < m_{41} < 130$ GeV with Run 2 data