Study of doubly charmed baryon at LHCb

Yixiong Zhou on behalf of the LHCb collaboration

CLHCP 2020

November 5, 2020

Yixiong Zhou (UCAS)

Study of doubly charmed baryon at LHCI

э

Outline

Overview

- Theoretical overview
- Experimental overview

Doubly charm baryon spectroscopy at LHCb

- A huge amount of *cc* have been produced
 - $\sigma(pp \to ccX) \approx 90 \text{ nb} @\sqrt{s} = 13 \text{ TeV}$
 - \blacktriangleright Collected 9 fb $^{-1}$ of data at 7, 8 and 13 $\,{\rm TeV}$
- Doubly charm baryon decay weakly with high multiplicity
 - Requires excellent vertexing and particle identification capabilities

LHCb detector

- Excellent vertex and PID performance and precise tracking resolution
- Ideal place for spectroscopy study

JINST 3 (2008) S08005

▲ 同 ▶ → 三 ▶

Theoretical overview

- Quark model predict the existence of the doubly charmed baryon
- SU(4) 20-plets $(J = \frac{1}{2})$ containing SU(3) triplets (ground states) : $\Xi_{cc}^+(ccd)$, $\Xi_{cc}^{++}(ccu)$ and $\Omega_{cc}^+(ccs)$

- Mass [PRD 61(2000) 057502]:
 $$\begin{split} m(\Xi_{cc}^+) \approx m(\Xi_{cc}^{++}) &\approx 3621 \text{ MeV}/c^2, \\ m(\Omega_{cc}) &\approx 3.7 \text{ GeV}/c^2 \end{split}$$
- Lifetime [PRD 98(2018) 113005]: 2-(-+) = 2-(0+) = -(-++) = -(-
 - $3\tau(\Xi_{cc}^+) \approx 3\tau(\Omega_{cc}^+) \approx \tau(\Xi_{cc}^{++}) \approx 256 \,\mathrm{fs}$

• Production [PRD 98(2018) 113005]:

σ(Ξ⁺_{cc}) ≈ σ(Ξ⁺⁺_{cc}) ≈ 3σ(Ω⁺_{cc}) ⇒ f_{frag}u : d : s ~ 1 : 1 : 0.26
 σ(Ξ⁺_{cc}) ≈ σ(Ξ⁺⁺_{cc}) ~ 40 nb; σ(Ω⁺_{cc}) ~ 10 nb

Experimental overview

- Ξ_{cc}^+ first claimed by SELEX
 - Mass $3518.7 \pm 1.7 \, {
 m MeV}/c^2$
 - Lifetime $\tau(\Xi_{cc}^+) < 30$ fs
 - ► Production $R = \frac{\sigma(\Xi_{cc}^{+})}{\sigma(\Lambda_{c}^{+})} \mathcal{B}(\Xi_{cc}^{+} \to \Lambda_{c}^{+} \mathcal{K}^{-} \pi^{+}) \sim 20\%$
- Not confirmed by BaBar, Belle and FOCUS

< 回 > < 三 > < 三 >

Ξ_{cc} at LHCb [JHEP 12 (2013) 090]

• LHCb search for Ξ_{cc}^+ using 2011 data at $\sqrt{s} = 7 \text{ TeV} [0.65 \text{ fb}^{-1}]$

$$R = \frac{\sigma(\Xi_{cc}^{+})}{\sigma(\Lambda_{c}^{+})} \mathcal{B}(\Xi_{cc}^{+} \to \Lambda_{c}^{+} K^{-} \pi^{+}) < 1.5 \times 10^{-2} (100 \text{ fs})$$
$$< 3.9 \times 10^{-4} (400 \text{ fs}) @95\% CL$$

November 5, 2020 7 / 19

Study of doubly charmed baryon at LHCI

Observation of Ξ_{cc}^{++}

- Ξ_{cc}^{++} first observed decay to $\Lambda_c^+ K^- \pi^+ \pi^+$ by LHCb at 2017
 - Significance $> 12\sigma$ with 2016 data, $> 7\sigma$ with 2012 data
 - $m(\Xi_{cc}^{++}) = (3621.40 \pm 0.72 \pm 0.27 \pm 0.14) \text{ MeV}/c^{2}$ [PRL 119(2017) 112001]
 - ► 100 MeV/c² away from the SELEX result (m(Ξ⁺_{cc})_{SELEX}=3519±1 MeV/c²)

• Later the lifetime was measured

•
$$au(\Xi_{cc}^{++}) = (0.256 \pm ^{+0.024}_{-0.022} \pm 0.014) \, \mathrm{ps} \, [\mathrm{PRL} \, {}^{121(2018)} \, {}^{052002]}$$

Weak decay confirmed

Ξ_{cc}^{++} confirmed [PRL 121 (2018) 162002]

- Confirmed by another decay channel $\Xi_{cc}^{++}\to \Xi_c^+\pi^+$
 - Significance $> 5.9\sigma$ with 2016 data

•
$$m(\Xi_{cc}^{++}) = (3621.24 \pm 0.65 \pm 0.31) \text{ MeV}/c^2$$

$$\blacktriangleright \frac{\mathcal{B}(\underline{=}_{cc}^{-}\to\underline{=}_{c}^{-}\pi^{+})\times\mathcal{B}(\underline{=}_{c}^{-}\to\mathcal{P}K^{-}\pi^{+})}{\mathcal{B}(\underline{=}_{cc}^{+}\to\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})\times\mathcal{B}(\Lambda_{c}^{+}\to\mathcal{P}K^{-}\pi^{+})} = 0.035 \pm 0.009 \pm 0.003$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Search for $\Xi_{cc}^{++}
ightarrow D^+ p K^- \pi^+$ decays [JHEP 10(2019) 124]

- Search for $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$ with $D^+ \rightarrow K^- \pi^+ \pi^+$
- Use 2016 data at $\sqrt{s} = 13 \, {\rm TeV} \, [1.7 \, {\rm fb}^{-1}]$
- No evidence for $\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+$, UL on ratio of \mathcal{B} : $\mathcal{R}(\frac{\mathcal{B}(\Xi_{cc}^{++} \rightarrow D^+ p K^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+)}) < 1.7(2.1) \times 10^{-2} @90\% (95\%) CL$

4 AR & 4 E & 4 E &

Search for the doubly charmed baryon Ξ_{cc}^+ [SCPMA 63(2020) 221062]

- Search for $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ with $\Lambda_c^+ \to p K^- \pi^+$
- Use full Run1+Run2 data, luminosity corresponds to $9.2\,{\rm fb}^{-1}$

- No significant signal is found in the mass range 3400-3800 MeV/c^2
- Largest local significance 3.1σ (statistical) around $3620 \text{ MeV}/c^2$ (Global significance 1.7σ)

Search for the doubly charmed baryon Ξ_{cc}^+ [SCPMA 63(2020) 221062]

• Set limits on the production ratios :

- Improve LHCb limits by order of magnitude compared to Run 1 analysis
- Limits significantly below the value reported by SELEX

Yixiong Zhou (UCAS)

Study of doubly charmed baryon at LHCI

 $\Xi_{cc}^{++}
ightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ production measurement [CPC 44(2020) 022001]

- Use 2016 data at $\sqrt{s} = 13 \,\mathrm{TeV} \, [1.7 \,\mathrm{fb}^{-1}]$
- Normalizing channel: $\Lambda_c^+ \rightarrow p K^- \pi^+$

$$\mathcal{R} = \frac{\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}{\sigma(\Lambda_c^+)}$$

•
$$\mathcal{R} = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

- Various theoretical models probing QCD make predictions
- Extremely important to understand the cc system in baryon
- The uncertainty on the Ξ⁺⁺_{cc} baryon is still large compare to the singly charmed baryons
- Update the Ξ_{cc}^{++} mass with 2016-2018 data ($\sqrt{s}=13\,{
 m TeV}$)
- Luminosity correspond to $5.6 \, \text{fb}^{-1}$
- Use both of the observed decay modes:

•
$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$
[PRL 119(2017) 112001]
• $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$ [PRL 121 (2018) 162002]

- 34

- Ξ_{cc}^{++} candidates are selected using MVA approach
- BDT method for $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ and MLP method for $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$
- Optimized with Figure of merit method $\left(\frac{S}{\sqrt{S+B}}\right)$
- Λ_c^+ and Ξ_c^+ candidates are selected with high purity

• To improve the mass resolution use mass difference as fit variable

•
$$m_{\text{cand}}(\Xi_{cc}^{++}) = m(\Lambda_c^+ K^- \pi^- \pi^+) - m(\Lambda_c^+) + M_{\text{PDG}}(\Lambda_c^+)$$

•
$$m_{\text{cand}}(\Xi_{cc}^{++}) = m(\Xi_{c}^{+}\pi^{+}) - m(\Xi_{c}^{+}) + M_{\text{PDG}}(\Xi_{c}^{+})$$

For the Ξ⁺⁺_{cc} → Ξ⁺_cπ⁺ mode two feed-down decays are considered
 Ξ⁺⁺_{cc} → Ξ⁺_c(→ Ξ⁺_cγ)π⁺
 Ξ⁺⁺_{cc} → Ξ⁺_cρ⁺(→ π⁺π⁰)

• • = • • = •

- Multiple scattering can increase/decrease the opening angle between Ξ_{cc}^{++} products
- Could bias the mass since the selection favours candidates with larger decay lengths
- Studied with charmed hadrons (Well reproduced by simulation)

	Uncertainty $[MeV/c^2]$	
Source	$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$	$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$
Momentum-scale calibration	0.21	0.34
Energy-loss correction	0.05	0.03
Simulation/data agreement	0.09	0.05
Selection-induced bias on the Ξ_{cc}^{++} mass	0.09	0.09
Final-state radiation	0.05	0.16
Background model	0.01	0.04
$\Lambda_c^+, \Xi_c^+ \text{ mass}$	0.14	0.22
Total	0.29	0.49

- By combining these two modes the uncertainty is reduced
- $\bullet\,$ Combination is dominant by the $\Xi_{cc}^{++}\to \Lambda_c^+ {\it K}^-\pi^+\pi^+$ mode

• Combined results (world's most precise value):

• $m(\Xi_{cc}^{++}) = (3621.55 \pm 0.23 \pm 0.30) \,\mathrm{MeV}/c^2$

Yixiong Zhou (UCAS)

Summary

• A lot of important results in doubly charmed baryon sector :

- ▶ Observed Ξ_{cc}^{++} in $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$ channel
- ▶ No evidence of $\Xi_{cc}^{++} \to D^+ p K^- \pi^+$ decay in 2016 data but larger datasets are available
- ▶ Ξ_{cc}^{++} lifetime and production rate ratio were measured for the first time
- Precision measurements of Ξ_{cc}^{++} have started
- ▶ Still no evidence for Ξ_{cc}^+ at LHCb will extend our searches to different final states soon
- Run3/4 approaching $\int \mathcal{L} dt = 23 \ / \ 50 \ \mathrm{fb}^{-1}$
- More results are expected in the near future

Thanks!

- 31