The 6th China LHC Physics Workshop

Observation of new excited Ξ_c^0 **states**

Zhihao Xu (University of Chinese Academic of Science)

2020/11/6

Motivation

- Hadron spectroscopy studies the masses and decays of hadrons.
- The properties of these hadrons are a result of quantum chromodynamics (QCD).
- QCD describes the theory of strong interactions between quarks and gluons, binding quarks and antiquarks into hadrons.

- SU(3) multiplets of ground states contain the (*u*, *d*, *s*) quarks.
- Can be extended to SU(4) by adding *c* quark.

Motivation

Study structure of hardon

- Quark model
- Quarks and diquark
- Tightly bound or molecular

HQET : Heavy Quark Effective Theories

Can be used to predict masses of heavy meson/baryon

Validate HQET by measuring excited states.

Heavy baryon model: Diquark system (q,q) Static heavy quark (Q)

Status

Beauty baryons

- Excited $\Sigma_b^{*\pm}$ states
 - $\Sigma_b^{*\pm} \to \Lambda_b^0 \pi^{\pm}$
 - <u>PRL 122 (2019) 012001</u>
- Excited Ω_b^- states
 - $\Omega_b^{*-} \to \Xi_b^0 K^-$
 - <u>PRL 124 (2020) 082002</u>
- Excited Λ_b^0 states
 - $\Lambda_b^{*0} \to \Lambda_b^0 \pi^+ \pi^ \Lambda_b^{**0} \to \Lambda_b^0 \pi^+ \pi^-$

PRL 123 (2019) 152001 arXiv:2002.05112

Charmed baryons

- Excited Ω_c^0 states
 - $\Omega_c^{**0} \to \Xi_c^+ K^-$
 - <u>PRL 118 (2017) 182001</u>
- Excited Ξ_c^0 states
 - $\Xi_c^{**0} \to \Lambda_c^+ K^-$
 - <u>PRL 124 (2020) 222001</u>

 $\begin{array}{c} \textit{Decay chain:} \\ \Xi_c^0 \rightarrow \Lambda_c^+ K^- \\ & \stackrel{\frown}{\sqcup} p K^- \pi^+ \end{array}$

Masses prediction

 $\begin{array}{c} \textbf{Decay chain:}\\ \Xi_c^0 \to \Lambda_c^+ K^-\\ & \stackrel{\frown}{\longmapsto} p K^- \pi^+ \end{array}$

Detector & data

- LHCb designed for charmed and bottom hardon.
- Excellent vertex, tracking and PID performance.

- 2016-2018 data at LHCb.
- Integrated luminosity: 5.57 fb⁻¹

Selection of Λ_c

 1000×10^{3}

800

Candidates / (0.5 MeV)

- Decay chain: $\Xi_c^0 \to \Lambda_c^+ K^ \rightarrow pK^{-}\pi^{+}$
- Select decays using multivariate boosted decision tree(BDT).

LHCb

- Input variables based on decay topology and $p_{\rm T}$ and particle identification information of the children particles.

Selection of *K*

- Select decays using a 2-Dimensional cut
- Optimizing selection simultaneously in **particle identification response** of the bachelor kaon and the p_T of the mother particle.

Zhihao Xu(UCAS) @CLHCP2020

Zhihao Xu(UCAS) @CLHCP2020

• All currently known Ξ_c^0 states (PDG) are marked if the mass bigger than threshold.

• Yellow – Not been seen

• $\Xi_c^+(3055)$ has been observed <u>PhysRevD.89.052003</u>

- Red Not been seen in this decay
- Green Observed in this decay
 - $\Xi_c^0(2930)$ is actually two states
 - Some strange things in $\Xi_c^0(2970)$

9

Feeddown are considered:

 $1.\Xi_{c}^{**+}(3080) \rightarrow (\Sigma_{c}^{++}(2455) \rightarrow \Lambda_{c}^{+}\pi^{+})K^{-}$ $2.\Xi_c^{**+}(3080) \to (\Sigma_c^{*++}(2520) \to \Lambda_c^+\pi^+)K^ 3.\Xi_c^{**+}(3055) \rightarrow (\Sigma_c^{++}(2455) \rightarrow \Lambda_c^+ \pi^+) K^ 4.\Xi_c^{**+}(3055) \rightarrow (\Sigma_c^{*++}(2520) \rightarrow \Lambda_c^+ \pi^+)K^ 5.\Xi_c^{*+}(2970) \rightarrow (\Sigma_c^{++}(2455) \rightarrow \Lambda_c^+ \pi^+) K^ \Lambda_c K$ from this channel.

$$\Box \Delta m = m(n_c n_c) \quad m(n_c) \quad mpag$$

Zhihao Xu(UCAS) @CLHCP2020

Summary

- Three states are observed with large significance.
- Mass and width are measured:

		/	
Resonance	Peak of ΔM [MeV]	Mass [MeV]	$\Gamma [{ m MeV}]$
$\Xi_c(2923)^0$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$
$\Xi_c(2939)^0$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$
$\Xi_c(2965)^0$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1\pm0.9\pm1.3$

PRL 124 (2020) 222001

 Λ_c^+ mass error from PDG

- Found two structures around previous $\Xi_c^0(\overline{2930})$
 - Statistics increasing
 - Different production mechanism (B-factories and LHCb)
- $\Xi_c^0(2965)$ is very close to $\Xi_c^0(2970)$
 - but mass and width are different

Discussion

- Gell-Mann-Okubo formula for baryons: $m(\Omega_c^{**0}) - m(\Xi_c^{**0}) = m(\Xi_c^{**0}) - m(\Sigma_c^{**0})$
- We have:

 $m(\Omega_c^0(3050)) - m(\Xi_c^0(2923)) \\\approx m(\Xi_c^0(2923)) - m(\Sigma_c^0(2800)) \approx 125 \text{ MeV}$

They should have the same J^{PC}

• And:

 $m(\Omega_c^0(3065)) - m(\Xi_c^0(2939)) \approx 125 \text{ MeV}$ $m(\Omega_c^0(3090)) - m(\Xi_c^0(2965/2970)) \approx 125 \text{ MeV}$

- More analysis on going.....
 - Other channels
 - Angular distribution

•••••

$$\begin{array}{c} & = & = & \Xi_{c}(2923)^{0} \rightarrow \Lambda_{c}^{+}K^{-} \\ & = & = & \Xi_{c}(2939)^{0} \rightarrow \Lambda_{c}^{+}K^{-} \\ & = & \Xi_{c}(2965)^{0} \rightarrow \Lambda_{c}^{+}K^{-} \\ & = & \Xi_{c}(2923)^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+} \\ & = & \Xi_{c}(3055)^{+} \rightarrow \Sigma_{c}^{++}(\rightarrow \Lambda_{c}^{+}\pi^{+})K^{-} \\ & = & \Xi_{c}(3055)^{0} \rightarrow \Sigma_{c}^{+}(\rightarrow \Lambda_{c}^{+}\pi^{0})K^{-} \\ & = & \Xi_{c}(3080)^{+} \rightarrow \Sigma_{c}^{++}(\rightarrow \Lambda_{c}^{+}\pi^{0})K^{-} \\ & = & \Xi_{c}(3080)^{0} \rightarrow \Sigma_{c}^{+}(\rightarrow \Lambda_{c}^{+}\pi^{0})K^{-} \\ & = & Background \\ & Additional component \end{array}$$

Figure 55: The fit where the peak at highest mass has been fixed to previously measured values ((a) [13], (b) [14] and (c) [9])

Source	$\Xi_c(2920)^0$	$\Xi_c(2940)^0$	$\Xi_c(2970)^0$
	$(m[MeV], \Gamma[MeV])$	$(m[MeV], \Gamma[MeV])$	$(m[MeV], \Gamma[MeV])$
Alternative fit model	(0.17, 1.59)	(0.14, 0.44)	(0.04, 1.09)
Resonance interferences	(0.08, 0.72)	(0.06, 0.95)	(0.11, 0.74)
Momentum scaling uncertainty	(0.04, 0.00)	(0.05, 0.00)	(0.06, 0.00)
Energy losses	(0.04, 0.00)	(0.04, 0.00)	(0.04, 0.00)
Data-MC discrepancy	(0.00, 0.57)	(0.00, 0.25)	(0.00, 0.26)
Total	(0.20, 1.84)	(0.17, 1.07)	(0.14, 1.34)
PDG mass uncertainty	(0.14, 0.00)	(0.14, 0.00)	(0.14, 0.00)

Table 24: Summary of the contributions to the systematic errors on the resonance parameters, where in every case the absolute deviation from the nominal fit is quoted.

1D vs. 2D cut of kaon

1D ProbNNk>0.997 $P_T(\Lambda_c^+ K^-)$ >7400 MeV

signal efficiency is 29.2% at a 98.6% background rejection.

2D ProbNNk>0.996 $P_T(\Lambda_c^+K^-)>7350$ MeV

signal efficiency is 35.19% at a 95.25% background rejection.