

Threshold resummation for CGC hadron production

Based on [H.Y.Liu, Kang, Liu, Phys. Rev. D.2020(rapid communication)]

Liu Hao-yu 2020.11.8

Outline

>CGC effective theory

PA->hX and negative cross section problem

Threshold resummation

Gluon Saturation

Gluon dominate parton Distribution for small Bjorken x

[Gelis, Iancu, Jalilian-Marian, Venugopalan, Ann.Rev.Nucl.Part.Sci,2010]

CGC effective theory (Color Glass Condensate) is one of the most suitable theory for saturation

Saturation in forward pA collision

Evolution equation

Dipole amplitude
$$S_{X_f}^{(2)}(\mathbf{b}_{\perp}, \mathbf{b}'_{\perp}) = \frac{1}{N_c} \langle Tr[W(\mathbf{b}_{\perp})W^{\dagger}(\mathbf{b}'_{\perp})] \rangle_{X_f}$$

 $X_f = \nu / p_A^-$ is the dimension less factorization scale

$$\frac{\partial S_{X_f}^{(2)}(\mathbf{b}_{\perp},\mathbf{b}_{\perp}')}{\partial \ln(1/X_f)} = -\frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 \mathbf{x}_{\perp} (\mathbf{b}_{\perp} - \mathbf{b}_{\perp}')^2}{(\mathbf{b}_{\perp} - \mathbf{x}_{\perp})^2 (\mathbf{b}_{\perp}' - \mathbf{x}_{\perp})^2} [S_{X_f}^{(2)}(\mathbf{b}_{\perp},\mathbf{b}_{\perp}') - S_{X_f}^{(2)}(\mathbf{b}_{\perp},\mathbf{x}_{\perp}) S_{X_f}^{(2)}(\mathbf{b}_{\perp}',\mathbf{x}_{\perp})]$$

Balitsky-Kovchegov evolution equation

Dynamic scale Q_s Typical Transverse Momentum Semi-hard $\alpha_s(Q_s)$ is not very small, higher order calculation is necessary

Negative cross section problem

First NLO calculation for CGC factorization theory

Demonstrate CGC factorization for this process

Cross section becomes Negative when $p_{h,\perp} > Q_s$ BRAHMS $\eta = 2.2, 3.2$

[Chirilli,Xiao,Yuan, Phys.Rev.Lett.2012] [Stasto et al,Phys.Rev.Lett,2014]

Further efforts to resolve this problem

- Put in the kinematic constraint
- Broaden the region where the cross section is positive
- Still becomes negative for medium and large $p_{h,\perp}$ region [Watanabe, Xiao, Yuan et al.PRD, 2015]

Positive defined result

But give up the power counting and factorization formalism

[Iancu,Mueller,Triantafyllopoulos. JHEP,**2016**] [Duclou, Lappi, Zhu, Phys. Rev. D **2017**]

Strict factorization framework

Kinematic constraint terms arise automatically

Further broaden the positive region

Still becomes negative for some region

[H.Y.Liu, Ma, Chao, Phys. Rev. D.2019(rapid communication)]

Dominate terms for large $p_{h,\perp p}$ $\frac{\mathrm{d}^2 \hat{\sigma}^{(1)}}{\mathrm{d}z \mathrm{d}^2 p'_{\perp}} \propto -\frac{\alpha_s}{2\pi} \mathbf{T}_i^2 P_{i \to i}(z) \ln \frac{r_{\perp}^2 \mu^2}{c_0^2} \left(1 + \frac{1}{z^2} e^{i\frac{1-z}{z}} p'_{\perp} \cdot r_{\perp}\right)$ \mathbf{T}^a_i Catani color operator $-\frac{\alpha_s}{\pi}\mathbf{T}_i^a\mathbf{T}_j^{a'}\int \frac{\mathrm{d}x_{\perp}}{\pi} \left\{\frac{1}{z}\tilde{P}_{i\to i}(z)\,e^{i\frac{1-z}{z}p'_{\perp}\cdot r'_{\perp}}\frac{r'_{\perp}\cdot r''_{\perp}}{r'_{\perp}^2r''_{\perp}^2}\right\}$ $\mathbf{T}_i^2 = C_F \text{ or } N_c$ $+ \delta(1-z) \ln \frac{X_f}{X_A} \left| \frac{r_{\perp}^2}{r'_{\perp}^2 r''_{\perp}^2} \right| \right\} W_{aa'}(x_{\perp}) + \dots$ $\frac{\bar{n} \cdot p'}{\bar{n} \cdot p} = z \qquad \frac{\bar{n} \cdot k}{\bar{n} \cdot p} = 1 - z$ $P_{i \rightarrow i}(z)$ Splitting function

When $p_{h,\perp}$ is large, especially in forward region where y_h is large, $x_p = p_{h,\perp} e^{y_h} / \xi \sqrt{s} \rightarrow 1$ $x_p < z < 1$ When $z \rightarrow 1$, $\tilde{P}_{i \rightarrow i}(z) \rightarrow \frac{2}{(1-z)_+}$ Threshold region

9

Because the PDF decreases rapidly when x_p is large, $f(x_p/z) \ll f(x_p)$ even when z is not far from 1

$$\frac{f(x_p/z) - f(x_p)}{1-z} \rightarrow -\frac{f(x_p)}{1-z}$$
 and becomes a large log and is negative

 $1 - \alpha_s L \to e^{-\alpha_s L}$

Evaluate the threshold contribution

The cross section remains positive after threshold part is subtracted s

- The threshold part dominate the NLO part at large $p_{h,\perp}$
- The numerical study indicates that the threshold contribution ^a is the main reason for the negative cross section problem

Resummation of large log may solve negative cross section problem

The factorization formula

We firstly reexamine the factorization formula by power counting $\frac{\mathrm{d}\sigma}{\mathrm{d}y_h\mathrm{d}^2p_{h\perp}} = \sum_{i,j=g,q} \frac{1}{4\pi^2} \int \frac{\mathrm{d}\xi}{\xi^2} \frac{\mathrm{d}x}{x} zx f_{i/P}(x,\mu) D_{h/j}(\xi,\mu)$ $\times \int \mathrm{d}^2b_{\perp}\mathrm{d}^2b'_{\perp} e^{ip'_{\perp}\cdot r_{\perp}} \left\langle \left\langle \mathcal{M}_0(b'_{\perp}) \right| \mathcal{J}(z,\mu,\nu,b_{\perp},b'_{\perp}) \mathcal{S}(\mu,\nu,b_{\perp},b'_{\perp}) | \mathcal{M}_0(b_{\perp}) \right\rangle^{\prime}$

 $\mathcal J$ Jet function Contribution from Collinear radiation Gluon in forward direction with momentum

 $\sqrt{s}(1,\lambda^2,\lambda)$ $\lambda \sim p_{h,\perp}/\sqrt{s} \ll 1$

Soft function Contribution from soft radiation
 Gluon in central direction with momentum

 $\sqrt{s}(\lambda,\lambda,\lambda)$

The soft function is responsible for the kinematic constraint missed in previous calculation $\nu \propto X_f p_A^-$ is the scale to sperate forward and central momentum

Large log and evolution

For the threshold region $z \to 1$ $\bar{n} \cdot k = \bar{n} \cdot p(1-z) \sim p'_{\perp}$

real emitted gluon $(\bar{n} \cdot k, n \cdot k, k_{\perp}) \sim \sqrt{s}(\lambda, \lambda, \lambda)$ soft

- ${\mathcal J}$ Contains only virtual correction contribution
- ${\cal S}$ Contains real correction contribution
- ${\mathcal J}$ and ${\mathcal S}$ can be calculated perturbatively

 $J^{(1)} \propto \alpha_s \ln\left(\frac{\nu}{\nu_J}\right) + \alpha_s \ln\left(\frac{\nu_J}{\bar{n} \cdot p}\right) + \dots \qquad \text{We reproduce the}$ full fixed order $S^{(1)} \propto \alpha_s \ln\left(\frac{\nu}{\nu_s}\right) + \alpha_s D_s(\nu_s) + \dots \qquad 1$

 $\begin{array}{ll} D_s(\nu_s) \text{ contains } \ln(\nu_s/\bar{n} \cdot p), \ \ln(\nu_s/p'_{\perp}) \text{ and } \frac{1}{(1-z)_+} \\ \nu_J = \bar{n} \cdot p & \nu_s \sim p'_{\perp} & p'_{\perp} \ll \bar{n} \cdot p \end{array}$ So the evolution equation is $\nu \frac{d}{d\nu} \mathcal{F}(\nu) = \gamma_{\mathcal{F}} \mathcal{F}(\nu) \quad \mathcal{F} = \mathcal{J} \text{ or } \mathcal{S}$

Leading log result

$$J^{(1)} \propto \alpha_s \ln\left(\frac{\nu}{\nu_J}\right) + \alpha_s \ln\left(\frac{\nu_J}{\bar{n} \cdot p}\right) + \dots$$

$$J^{(0)} + J^{(1)} \propto (1 + \alpha_s \ln\left(\frac{\nu}{\nu_J}\right))(1 + \alpha_s \ln\left(\frac{\nu_J}{\bar{n} \cdot p}\right) + \dots)$$
All order
$$All \text{ order}$$

$$F(\nu_F) \quad \text{Initial condition}$$

$$\boldsymbol{\mathcal{F}}(\nu) = \boldsymbol{U}_{\mathcal{F}}(\nu, \nu_{\mathcal{F}}) \, \boldsymbol{\mathcal{F}}(\nu_{\mathcal{F}})$$

Leading log result

$$\boldsymbol{U}_{J}\boldsymbol{U}_{S} = \exp\left[-\frac{\alpha_{s}}{\pi}\int\frac{\mathrm{d}x_{\perp}}{\pi}\left(\ln\frac{\nu_{S}}{\nu_{J}}I_{BK,r} + \ln\frac{X_{f}}{X_{A}}I_{BK}\right)\mathbf{T}_{i}^{a}\mathbf{T}_{j}^{a'}W_{aa'}(x_{\perp})\right]$$

 $d\sigma \propto \mathbf{U}_J \mathbf{U}_S \bigotimes S^{(2)}$ $\frac{d\sigma}{dX_f} = 0$

 X_f can be arbitrary value

The exponential part is complicated, for simplicity, we take X_f to make $U_J U_S$ be around 1

Phemenology application

NLO+LL resummed result

Positive for the whole range of $p_{h,\perp}$

Consistent with the experiment data

[I. Arsene et al. [BRAHMS Collaboration], PRL. 2004]

Summary

- ➤The threshold contribution is the main reason of the negative cross section problem
- The threshold log can be resumed by our factorization formalism
- The numerical NLO+LL result stays positive and is consistent with the experimental data
- Our method can be used to calculate other high order result by CGC factorization

Thank You!