

Performance of the ATLAS RPC detector and Level-1 muon barrel trigger at √s = 13 TeV

CLHCP 2020

Marco Sessa University of Science and Technology of China 6th November 2020

The ATLAS muon barrel trigger

- The Level-1 Muon Barrel Trigger is one of the main elements of the online event selection of the ATLAS experiment at the Large Hadron Collider (ATLAS trigger latency ~ 2.5 μs)
- It exploits the Resistive Plate Chambers (RPC) detectors to generate the trigger signal → <u>Intrinsic time</u> resolution ~ 1 ns (for 2 mm gas-gap)
- The RPCs are placed in the barrel region of the ATLAS experiment: they are arranged in three concentric double layers at radius 7 m and 10 m, operating in a toroidal magnetic field of about 0.5 T
- The Level-1 muon barrel trigger selects the muon candidates according to their transverse momentum and associates them to the correct bunch-crossing

The ATLAS Resistive Plate Chambers

- Each RPC chamber consists of two RPC layers with 2 mm width gas gaps. Each module is read out by two planes of orthogonal strips, in η and φ views, with a width of 25-35 mm
- Gas mixture of C₂H₂F₄: C₄H₁₀: SF₆ (94.7 : 5.0 : 0.3)% operated in saturated avalanche mode at 9.6 kV
- RPC detectors cover the pseudo-rapidity range |η| < 1.05 (θ <38°) for a total surface of about 4000 m² and ~3700 gas volumes (with 380k readout channels)
- RPC is the only system in the barrel Muon Spectrometer that provides the φ coordinate of the muon tracks

RPC detector efficiency

 RPC detector efficiency is computed as the fraction of hits matched with the extrapolated position of the muon track within a distance of 30 mm from the centre of the strip and within 12.5 ns from the triggered bunch crossing (BCO)

RPC detector efficiency

 RPC detector efficiency is computed as the fraction of hits matched with the extrapolated position of the muon track within a distance of 30 mm from the centre of the strip and within 12.5 ns from the triggered bunch crossing (BCO)

Distribution of the panel efficiencies of **all RPC modules** in 2018

High efficiency for most of the panels

Mean detector efficiency as a function of time of all live RPC panels in 2018

Each point corresponds to a different run recorded in 2018 → stable performance during the full data-taking period

Front-end discriminator threshold adjustment

Time resolution

- Measure total RPC time resolution by measuring time differences between muon hits in 2 RPC layers
 - 2 layers are separated by \sim 20 mm \rightarrow negligible muon time-of-flight
 - Fit time differences for every pair of RPC strips with Gaussian function
 - Includes both intrinsic RPC time resolution and front-end electronics effects (320 MHz sampling rate)
- P Measure **electronics time resolution** by measuring time differences between muon η and φ hits in 1 layer
 - η and ϕ measurements for the same avalanche event
 - Fit time differences for every pair of η and ϕ strips with Gaussian function
- Intrinsic **RPC time resolution** estimated by subtracting electronics component from the total for every strip pair

Current measurements

- RPC current and counting rate are dominated by secondary particles
 - Mostly photons and neutrons produced in interactions with the detector and beam pipe material
- Gas-gap currents (normalized to the gap area) are measured as a function of instantaneous luminosity
- Aim to predict safe operating voltage settings for each gas gap for HL-LHC
- Current is observed to be proportional to the luminosity → this shows that the present RPC system is in a very good status

Averaged currents of several gas volumes belonging to chambers at different distance from IP

Counting rate

- RPC current and counting rate are dominated by secondary particles
 - Mostly photons and neutrons produced in interactions with the detector and beam pipe material
- Counting rates measured in the 3 bunch crossings (BC) immediately preceding the BC triggered by the single muon trigger (BCO)
- Rates normalised to surface area plotted as a function of the instantaneous luminosity or measured at the reference luminosity of 1.8×10³⁴ Hz/cm² for all modules

Avalanche charge

- The avalanche charge produced by the electron amplification process inside the gas depends mainly on the electric field across the gas-gap and the gas mixture
- The avalanche charge is measured using background events as $Q = \frac{Current}{Rate}$
 - Current measured as total charge per second, while counting rate measured using only signals above threshold
- Mean avalanche charge of about 30 pC is consistent with previous measurements, obtained using γ sources or at test beam facilities
- Avalanche charge is approximately uniform across the detector, with variations between modules due to differences in front-end discriminator thresholds, applied voltage and temperature

The Level-1 muon barrel trigger logic

- The RPC trigger system consists of 432 projective trigger towers. It is able to construct and provide to the software-based High Level Trigger a Region of Interest (RoI) with a granularity of Δη x Δφ = 0.1 x 0.1
- The Level-1 muon barrel trigger logic is based on the coincidence of hits in different RPC layers (both in η and φ projections)
- Two different p_τ-regimes exist:
 - the low-p_T trigger requires a coincidence between the two innermost RPC layers (RPC1 and RPC2). It is used to select muons with p_T above 4 GeV (MU4), 6 GeV (MU6) and 10 GeV (MU10).

They are used mainly for multi-object triggers and <u>B-physics</u>

the high-p_τ trigger requires an additional confirmation on the third external layer (RPC3) and selects muons with p_τ above 10 GeV (MU11) and 20 GeV (MU20 and MU21).

<u>MU20 is the lowest unprescaled single-muon trigger</u> <u>threshold</u>

Level-1 muon barrel trigger efficiency

- Trigger efficiency investigated using unbiased muons from Z boson decays ($Z \rightarrow \mu\mu$ Tag&Probe)
- Efficiency limited in the barrel region by toroid support structures and ATLAS "feet" supports

Level-1 muon barrel trigger efficiency

- Trigger efficiency (× geometrical acceptance) as a function of muon transverse momentum → 76.5% for MU10 and 70.0% for MU20 in the plateau region
 - Efficiency reduction due to gas-gaps disconnected from power supply (gas leaks) → mostly located on the external layer (BO chambers)
- Plateau values measured in each ATLAS run → Very good stability during the data taking has been achieved

Detector response at different FE discriminator thresholds

- Study the response of few RPC chambers with lower HV and thresholds
- At HL-LHC (5 7.5 10³⁴ cm⁻² s⁻¹) the integrated charge collected in the avalanche will be enough high to limit the detector lifetime
- In order to keep the performance of current system stable during years, it is needed to lower the HV in the RPC gas-gaps (9.6 kV → 9.2 kV). At the same time, new RPCs will be installed in the innermost layer of the Muon Barrel Spectrometer to increase the redundancy of the trigger system and the trigger efficiency
- This study demonstrates that part of the efficiency lost by reducing the RPC HV can be recovered by lowering the thresholds of the Front-End discriminator (10% on average)

Summary and conclusions

- Muon triggers are of crucial importance for fulfilling the physics program of the ATLAS experiment
- L1 muon barrel trigger is the largest RPC system in a collider experiment
- ATLAS RPCs worked for long time with stable performance (both detector and trigger efficiencies) and operations for ~10 years, even with a factor of 2 larger than the design instantaneous luminosity → no signs of ageing observed
- Very large effort to monitor the RPC performance continuously during the year → major effort by USTC group
- No major upgrades are foreseen for Run-3, but for Phase-II a completely new trigger system is expected: 1 mm gas gap RPCs in the innermost muon spectrometer layer (BI) + new trigger electronics

All ATLAS RPC public results available here: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1MuonTriggerPublicResults https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/MUON-2018-09/ https://atlas.web.cern.ch/Atlas/GROUPS/MUON/PLOTS/MDET-2020-01/

Back-up slides

Cluster hit multiplicity

Cluster size

Time resolution: front-end electronics component

Counting rate: extra plots

Timing performance

- Correct bunch crossing (BC) association is one of the main requirements of the Level-1 muon barrel trigger
- Hits from various RPC detectors are calibrated in order to provide the correct timing
- The "online" calibration is performed using programmable delays in steps of 1/8 BC (3.125 ns)
- 99.6% of the Level-1 muon barrel triggers are associated to the correct BC

Closest distance between muon tracks and hits

ATLAS data-taking performance during 2018

Muon barrel acceptance limits

- Acceptance holes of the Level-1 muon barrel trigger ~22%
- Holes due to toroid ribs (Small Sectors) and Z=O crack (Large Sectors) + holes in feet region and bottom sector (elevator)

Level-1 muon barrel trigger: feet region

Upgrade project to cover acceptance holes in the "feet" sectors (12-14) 4th RPC layer 2.8% increase of barrel acceptance

20 RPC chambers installed before 2008, equipped with services and electronics during long shutdown 2013-2014

Special trigger "towers" implementing simple two-station coincidences (4 layers)

Interaction

Level-1 muon barrel trigger: feet region

Trigger efficiency in one feet sector (2017)

- The MU10 trigger requires that a candidate passed the 10 GeV threshold requirement of the Level 1 muon trigger system, using medium trigger chambers.
- The MU11 trigger requires that a candidate passed the 10 GeV threshold requirement of the Low-p_T Level 1 muon trigger system, with a coincidence with a High-p_T RPC chamber.
- The efficiency is measured on an inclusive sample selected using all non-muon Level 1 ATLAS triggers, in 13 TeV data from 2017 with 25 ns LHC bunch spacing.

Level-1 muon barrel trigger: sector 13

Trigger efficiency vs pile-up

Trigger performance expected for Run-3

Figure 3.5: Geometrical acceptance of the L0 barrel trigger with respect to reconstructed muons with $p_{\rm T} = 25$ GeV in the η - ϕ plane. Figures (a), (b), and (c) show the acceptance for the different trigger coincidence logic schemes: 3/3 chambers, 3/4 chambers, and 3/4 chambers + BI-BO, respectively

	BM and BO	Trigger efficiency $ imes$ acceptance (%)		
	efficiency (%)	3/3 chambers	3/4 chambers	3/4 chambers + BI-BO
Lowered HV in BM and BO 🔻	100	78	91	96
	90	73	90	95
	80	62	87	93
	Worst case	63	85	92

Trigger performance expected for Run-3

trigger that is restricted to acceptance gaps

45 kHz

3/4 chambers + BI-BO (*)

Hit position reconstruction

- Detector alignment and correct cabling are investigated using the correlation between the expected and measured muon positions
- Most of the panels perform properly, with most of the entries in the diagonal
- Actions are taken depending on the specific case

