Stability of LHCb luminosity counters

周亦雄-Yixiong Zhou University of Chinese Academy of Sciences on behalf of the LHCb collaboration

CLHCP 2020

November 6, 2020

Stability of LHCb luminosity counters

4 E b

< A IN

Outline

1 LHCb experiment

< (T) >

э

LHCb experiment

- Single-arm forward spectrometer, $2 < \eta < 5$ (40% of *b*-hadron in 4% solid angle)
- ~45kHz $b\bar{b},{\sim}1\text{MHz}$ $c\bar{c}$ pairs at 13 TeV and $\mathcal{L}=4\times10^{32}\mathrm{cm}^{2}\mathrm{s}^{-1}$
- Excellent tracking, vertex and PID performance
- Sophisticated hardware (Level 0) and software (High Level) triggers

LHCb luminosity measurement

- Crucial for production measurement
- Luminosity measurement was used in 54 LHCb papers: Run1

topics	<i>W</i> , <i>Z</i>	Υ	$\int J/\Psi, \Psi(2S)$	с	b	t	Beyond SM
N _{publication}	14	6	12	4	5	2	2

< 4 → 1

Pile-up monitoring at LHCb

- Counting pile-ups μ :
 - *N* interaction per bunch crossing (LHCb: $\mu \approx 1$)
- Measured in $\sim 1 \text{kHz}$ random events with "luminosity counters" :
 - ▶ VELO: *N* tracks, vertices, upstream hits, backward hits
 - SPD pre-shower : N hits
 - Calorimeters : transverse energy
 - Muon : N muons
- μ was measured with "log-zero" (zero count) method:
 - μ satisfied Poisson distribution
 - $\mu = -\log(P(0))$, P(0) is the fraction of empty events
 - Small beam-gas background is estimated from non-colliding bunches and subtracted with : $\mu_{vis} = \mu_{bb} - \mu_{be} - \mu_{eb}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Method for luminosity measurement

- Two kind of approaches:
 - ► Indirect: Use previous measurement or theoretical prediction of the absolute value of the interested cross section (e⁺e⁻ collider)
 - Direct: Use the geometric properties and particle distributions inside the colliding beams (hadron collider)
- Luminosity can be determined with:

$$\int \mathcal{L} dt = N_1 N_2 f \int \int \rho_1(x, y) \rho_2(x, y) dx dy = rac{N_{vis}}{\sigma_{ref}}$$

► *f* is the frequency of collisions, $N_{1,2}$ are bunch populations, $\rho_{1,2}$ are bunch profiles

• At LHCb the luminosity is measured by absolute calibration (σ_{vis}) and relative monitoring (N_{vis})

Yixiong Zhou (UCAS)

Absolute calibration of \mathcal{L} -Beam gas imaging (BGI)

- Main difficulty : $\int \int \rho_1(x, y) \rho_2(x, y) dx dy$
- Find $\rho_{1,2}$ from beam images recorded with beam-gas interactions [NIM A 553 (2005) 388]
- Inject a tiny amout of gas using injection System for Measuring the Overlap with Gas (SMOG)
- SMOG can be used as a fixed target (for heavy ion physics)

< (17) > < (17) > <

Absolute calibration of \mathcal{L} -BGI

• Beam profiles are unfolded with VELO spatial resolution

2D fit for one bunch pair as an example. Pulls are shown by color in $\pm 3\sigma$ range in the top.

 \bullet The best BGI luminosity calibration precision (8 $\,{\rm TeV}$ data) : 1.43% [

J. Instrum. 9 (2014) P12005]

Absolute calibration of *L*-Van der Meer scan

• Idea is to integrated out the ρ by sweeping one beam across the plane [CERN ISR-PO-68-31]:

$$\int \int \rho_1(x + \Delta x, y + \Delta y) \rho_2(x, y) d\Delta x d\Delta y dx dy = 1$$

• The σ can interpretative as:

$$\sigma = \int \int \mu(\Delta x, \Delta y) d\Delta x d\Delta y dx dy / N_1 N_2$$

- \bullet Works for any $\rho_{\rm 1,2}$ and any LHC crossing angle
- If the $\rho_{1,2}$ factorizable in x,y:

$$\sigma = \frac{\int \mu(\Delta x, y_0) d\Delta x \cdot \int \mu(x_0, \Delta y) d\Delta y)}{\mu(x_0, y_0) N_1 N_2}$$

• Crossing point " x_0, y_0 " may be chosen arbitrarily [NIM, A 654 (2011) 634]

< □ > < □ > < □ > < □ > < □ > < □ >

Absolute calibration of \mathcal{L} -Van der Meer scan

 μ in one bunch crossing in X, Y scans, fit to sum of Gaussians.

$$\sigma = \frac{\int \mu(\Delta x, y_0) d\Delta x \cdot \int \mu(x_0, \Delta y) d\Delta y}{\mu(x_0, y_0) N_1 N_2}$$

Main method for LHCb luminosity measurement

Yixiong Zhou (UCAS)

Relative $\mathcal L$ monitoring - Counter stability

- Ideally pile-up ratio between different lumi counters should be constant
- This allows
 - Powerful cross checks
 - To estimate systematic errors

Systematic uncertainty of counter stability in Run1 is 0.12~0.14%

Stability problems in Run2

 Instability of CaloEt+SPD gives a large systematic uncertainty in Run2~3% (in Run 1 similar spread in pp was 0.12~0.14% only)

November 6, 2020

< 1 k

Stability of Velo, Vertex and Muon

- $\bullet~Vertex/Velo$ is stable across runs ${\sim}0.3\%$
- Vertex has common systematics to Velo, better use other counter : Muon, SPD, CaloEt
- For Muon/Velo the stability is at the level of 4%

Vertex/Velo within fill for 2018.

Muon/Velo within fill for 2018.

November 6, 2020 13 / 17

SPD surroundings are activated by irradiation

- Fast and slow "after glow" exponentials + (possibly?) spill over
- $\chi 2$ fit to the $\mu_{\it vis}$ distribution

$$\mu_{j}^{\textit{vis}} = \mu_{j}^{\textit{true}} + \sum_{i < j}^{bb} \mu_{bb,i}^{\textit{true}} (c_{1}e^{\frac{-(j-i)\Delta t}{\Delta T_{1}}} + c_{2}e^{\frac{-(j-i)\Delta t}{\Delta T_{2}}}) + \mu_{j-1}^{\textit{true}} * \textit{spill_over}$$

where $\mu_{j}^{\textit{true}}=\text{0}$ for ee, $\mu_{bb}^{\textit{true}}$ for bb

• Fit example for fill 4220:

SPD after glow not stable (2015 vs 2018)

Fill	C 1	$\Delta T_1/25$ ns	<i>C</i> ₂	$\Delta T_2/25$ ns	sp
4220 (2015)	0.482	1.492	0.004	71.071	0.383
6583 (2018)	0.939	1.132	0.002	63.082	0.194

Try CaloEt+SPD. Fit function:

$$\mu_{bb,j}^{\textit{vis}} = \mu_{bb,j}^{\textit{true}} + \mu_{bb,j-1}^{\textit{true}} * \textit{frac1} + \mu_{bb,j-2}^{\textit{true}} * \textit{frac2}$$

Fit results for CaloEt+SPD:				± 1.6 1.4 1.4				
_	Fill	frac1	frac2	. 0.8		10 ⁻¹		
	4220 (2015) 6583 (2018)	4.458e-02 7.635e-02	3.022e-03 1.575e-02	0.6		295	³⁰⁰ 305 Fill 6583 (2018	310 BCID
A	lso not stable, tr	ry CaloEt.		0	300	320	340	BCI
Yixiong Zhou (UCAS)			Stability of LHC		I	November 6	, 202	

15/17

Stability of CaloEt across years

- CaloEt does not suffer from after glow or spill over (checked in fills 4220 and 6583), but has large noise in ee (\sim 3%)
- Beam-gas background from beam2 should be small for CaloEt
- Idea : Use $\mu_{bb} \mu_{be}$ instead of $\mu_{bb} \mu_{be} \mu_{eb}$ to cancel *ee* noise
- Standard deviation(SD) for 2015-2018 are 0.48%, 0.40%, 0.61% and 0.73% respectively

Summary

- CaloEt+SPD instability is caused by the activation of the SPD surroundings
- Such effect is unstable across years (Hard to correct)
- Systematics of counter stability is much reduced when using $\mu_{bb} \mu_{be}$ for CaloEt instead of $\mu_{bb} \mu_{be} \mu_{eb}$ for CaloEt+SPD
- Such problems can be avoid if the emittance scans will be added in the beginning and the end of each fill
- Collaboration work with Vladislav Balagura (LLR –Ecole polytechnique/CNRS/IN2P3)

Thanks!

3