# Stability of LHCb luminosity counters 

周亦雄－Yixiong Zhou
University of Chinese Academy of Sciences on behalf of the LHCb collaboration

## CLHCP 2020

November 6， 2020

## Outline

(1) LHCb experiment
(2) LHCb luminosity measurement
(3) Stability of luminosity counters

4 Summary

## LHCb experiment

- Single-arm forward spectrometer, $2<\eta<5$ ( $40 \%$ of $b$-hadron in $4 \%$ solid angle)
- $\sim 45 \mathrm{kHz} b \bar{b}, \sim 1 \mathrm{MHz} c \bar{c}$ pairs at 13 TeV and $\mathcal{L}=4 \times 10^{32} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
- Excellent tracking, vertex and PID performance
- Sophisticated hardware (Level 0) and software (High Level) triggers


JINST 3 (2008) S08005

## LHCb luminosity measurement

- Crucial for production measurement
- Luminosity measurement was used in 54 LHCb papers: Run1

| topics | $W, Z$ | $\Upsilon$ | $J / \Psi, \Psi(2 S)$ | $c$ | $b$ | $t$ | Beyond SM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N_{\text {publication }}$ | 14 | 6 | 12 | 4 | 5 | 2 | 2 |

## Pile-up monitoring at LHCb

- Counting pile-ups $\mu$ :
- $N$ interaction per bunch crossing (LHCb: $\mu \approx 1$ )
- Measured in $\sim 1 \mathrm{kHz}$ random events with "luminosity counters":
- VELO: $N$ tracks, vertices, upstream hits, backward hits
- SPD pre-shower: $N$ hits
- Calorimeters : transverse energy
- Muon: $N$ muons
- $\mu$ was measured with "log-zero" (zero count) method:
- $\mu$ satisfied Poisson distribution
- $\mu=-\log (\mathrm{P}(0)), \mathrm{P}(0)$ is the fraction of empty events
- Small beam-gas background is estimated from non-colliding bunches and subtracted with : $\mu_{\text {vis }}=\mu_{b b}-\mu_{b e}-\mu_{e b}$


## Method for luminosity measurement

- Two kind of approaches:
- Indirect: Use previous measurement or theoretical prediction of the absolute value of the interested cross section ( $e^{+} e^{-}$collider)
- Direct: Use the geometric properties and particle distributions inside the colliding beams (hadron collider)
- Luminosity can be determined with:
$\int \mathcal{L} d t=N_{1} N_{2} f \iint \rho_{1}(x, y) \rho_{2}(x, y) d x d y=\frac{N_{v i s}}{\sigma_{\text {ref }}}$
- $f$ is the frequency of collisions, $N_{1,2}$ are bunch populations, $\rho_{1,2}$ are bunch profiles


## Interaction

region


- At LHCb the luminosity is measured by absolute calibration ( $\sigma_{v i s}$ ) and relative monitoring ( $N_{\text {vis }}$ )


## Absolute calibration of $\mathcal{L}$-Beam gas imaging (BGI)

- Main difficulty : $\iint \rho_{1}(x, y) \rho_{2}(x, y) d x d y$
- Find $\rho_{1,2}$ from beam images recorded with beam-gas interactions [NIM A 553 (2005) 388]
- Inject a tiny amout of gas using injection System for Measuring the Overlap with Gas (SMOG)
- SMOG can be used as a fixed target (for heavy ion physics)



## Absolute calibration of $\mathcal{L}$-BGI

- Beam profiles are unfolded with VELO spatial resolution



Beam-beam


2D fit for one bunch pair as an example. Pulls are shown by color in $\pm 3 \sigma$ range in the top.

- The best BGI luminosity calibration precision ( 8 TeV data) : 1.43\% [

[^0]
## Absolute calibration of $\mathcal{L}-$ Van der Meer scan

- Idea is to integrated out the $\rho$ by sweeping one beam across the plane [CERN ISR-PO-68-31]:

$$
\iint \rho_{1}(x+\Delta x, y+\Delta y) \rho_{2}(x, y) d \Delta x d \Delta y d x d y=1
$$

- The $\sigma$ can interpretative as:

$$
\sigma=\iint \mu(\Delta x, \Delta y) d \Delta x d \Delta y d x d y / N_{1} N_{2}
$$

- Works for any $\rho_{1,2}$ and any LHC crossing angle
- If the $\rho_{1,2}$ factorizable in $\mathrm{x}, \mathrm{y}$ :

$$
\sigma=\frac{\left.\int \mu\left(\Delta x, y_{0}\right) d \Delta x \cdot \int \mu\left(x_{0}, \Delta y\right) d \Delta y\right)}{\mu\left(x_{0}, y_{0}\right) N_{1} N_{2}}
$$

- Crossing point " $x_{0}, y_{0}$ " may be chosen arbitrarily [nim, A 654 (2011) 634]


## Absolute calibration of $\mathcal{L}-$ Van der Meer scan


$\mu$ in one bunch crossing in $\mathrm{X}, \mathrm{Y}$ scans, fit to sum of Gaussians.

$$
\sigma=\frac{\int \mu\left(\Delta x, y_{0}\right) d \Delta x \cdot \int \mu\left(x_{0}, \Delta y\right) d \Delta y}{\mu\left(x_{0}, y_{0}\right) N_{1} N_{2}}
$$

- Main method for LHCb luminosity measurement


## Relative $\mathcal{L}$ monitoring - Counter stability

- Ideally pile-up ratio between different lumi counters should be constant
- This allows
- Powerful cross checks
- To estimate systematic errors

- Systematic uncertainty of counter stability in Run1 is $0.12 \sim 0.14 \%$


## Stability problems in Run2

- Instability of CaloEt+SPD gives a large systematic uncertainty in Run2~3\% (in Run 1 similar spread in pp was $0.12 \sim 0.14 \%$ only)

- DOWN
- UP
period
- preTS1
- preTS2
- preTSW

- DOWN
- UP
period
- preTS1
- preTS2
- preTS3


## Stability of Velo, Vertex and Muon

- Vertex/Velo is stable across runs $\sim 0.3 \%$
- Vertex has common systematics to Velo, better use other counter : Muon, SPD, CaloEt
- For Muon/Velo the stability is at the level of $4 \%$


Vertex/Velo within fill for 2018.


Muon/Velo within fill for 2018.

## SPD surroundings are activated by irradiation

- Fast and slow "after glow" exponentials + (possibly?) spill over
- $\chi 2$ fit to the $\mu_{\text {vis }}$ distribution

$$
\mu_{j}^{v_{i s}}=\mu_{j}^{\text {true }}+\sum_{i<j}^{b b} \mu_{b b, i}^{\text {true }}\left(c_{1} e^{\frac{-(j-i) \Delta t}{\Delta T_{1}}}+c_{2} e^{\frac{-(i-i) \Delta t}{\Delta T_{2}}}\right)+\mu_{j-1}^{\text {true }} * \text { spill_over }
$$

where $\mu_{j}^{\text {true }}=0$ for ee, $\mu_{b b}^{\text {true }}$ for bb

- Fit example for fill 4220:



## SPD after glow not stable (2015 vs 2018)

| Fill | $c_{1}$ | $\Delta T_{1} / 25 \mathrm{~ns}$ | $c_{2}$ | $\Delta T_{2} / 25 \mathrm{~ns}$ | sp |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $4220(2015)$ | 0.482 | 1.492 | 0.004 | 71.071 | 0.383 |
| $6583(2018)$ | 0.939 | 1.132 | 0.002 | 63.082 | 0.194 |

Try CaloEt+SPD. Fit function:

$$
\mu_{b b, j}^{\text {vis }}=\mu_{b b, j}^{\text {true }}+\mu_{b b, j-1}^{\text {true }} * f r a c 1+\mu_{b b, j-2}^{\text {true }} * f r a c 2
$$

Fit results for CaloEt+SPD:

| Fill | frac1 | frac2 |
| :---: | :---: | :---: |
| $4220(2015)$ | $4.458 \mathrm{e}-02$ | $3.022 \mathrm{e}-03$ |
| $6583(2018)$ | $7.635 \mathrm{e}-02$ | $1.575 \mathrm{e}-02$ |

Also not stable, try CaloEt.


## Stability of CaloEt across years

- CaloEt does not suffer from after glow or spill over (checked in fills 4220 and 6583), but has large noise in ee ( $\sim 3 \%$ )
- Beam-gas background from beam2 should be small for CaloEt
- Idea: Use $\mu_{b b}-\mu_{b e}$ instead of $\mu_{b b}-\mu_{b e}-\mu_{e b}$ to cancel ee noise
- Standard deviation(SD) for 2015-2018 are $0.48 \%, 0.40 \%, 0.61 \%$ and $0.73 \%$ respectively

2015 data with CaloEt


2018 data with CaloEt


## Summary

- CaloEt+SPD instability is caused by the activation of the SPD surroundings
- Such effect is unstable across years (Hard to correct)
- Systematics of counter stability is much reduced when using $\mu_{b b}-\mu_{b e}$ for CaloEt instead of $\mu_{b b}-\mu_{b e}-\mu_{e b}$ for CaloEt+SPD
- Such problems can be avoid if the emittance scans will be added in the beginning and the end of each fill
- Collaboration work with Vladislav Balagura (LLR -Ecole polytechnique/CNRS/IN2P3)


[^0]:    J. Instrum. 9 (2014) P12005]

