
DingYu		Shao	(邵鼎煜)	
UCLA

Recoil-free	azimuthal	angle	for	precision	
boson-jet	correla@on

�1

CLHCP	2020



Introduc@on
• The	back-to-back	jets	produc@on	is	an	essen@al	hard	probe	in	high	energy	

collisions.		
• Use	azimuthal	decorrela@ons	to	expose	

• Proton	3-D	imaging	in	momentum	space:	gluon	TMDs	
• Probe	of	fundamental	physics:	polariza@on	of	gluon		
• PT	broadening	in	heavy-ion	collisions		
• …	…Quark TMDs

�[�+]
q h(x, b) = f1(x, b) + i✏µ⌫T bµs⌫Mf?1 (x, b)
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum



• non-global	structures	
• from	jets	of	intermediate	energy	
• reflect	color	flow	at	all	scales	
• do	not	exponen@ate	in	a	simple	
manner	

• Non-linear	evolu@on,	BMS	eq	

• factoriza@on	viola@on	effects	
• No	TMD	factoriza@on	for	dijet	(Collins	

&	Qiu	’07,	Rogers	&	Mulders	’10,	……)	
• Glauber	gluon	
• Lipatov	vertex	
• superleading	logs

Theory	challenges	for	TMD	factoriza@on	of	jets

accompanied by soft radiation, as in Eq. (2) above. Such cross sections, were termed “global”
by Dasgupta and Salam in Ref. [11]. Recently, Banfi, Salam and Zanderighi have extended NLL
resummation to a wide class of global observables in e+e−, DIS and hadron-hadron scattering,
by developing an innovative software package [12].

4 Non-global Logs: Color and Energy Flow

Complementary to jet shapes are descriptions of interjet energy flow. A simple illustration is
shown in Fig. 2, where we trigger on two jet events in the scattering of particles A and B, and
measure the inclusive distribution ΣΩ(E), where E ≥ EΩ ≥ 0, with EΩ the energy that flows
into some angular region Ω, away from both the collision axis and the jet directions. Quantities
like ΣO(E) are sometimes referred to as radiators.

Figure 2: Geometry for energy flow observables.

We can imagine (at least) two choices for such a cross section. First, it may be fully inclusive
in the region Ω̄ between Ω and the jets. In this case, the number of jets is not fixed, and the
observable is nonglobal in the terminology Dasgupta and Salam [11]. This observable cannot be
factorized into a fixed number of jets as in Eq. (2), and as such cannot be resummed to a simple
exponential in the same way as the event shapes described above. Alternatively, we may limit
radiation into region Ω̄ by constructing a correlation with an event shape such as τa that fixes
the number of jets [8, 13].

Cross sections where the number of jets is not fixed are not fully understood, but they remain
infrared safe, so that we should be able to learn about them in perturbation theory. Indeed,
Banfi, Marchesini and Smye [14] showed that at leading logarithm, αn

s ln
n(
√
S/EΩ), and in the

limit of large numbers of colors, Nc, these cross sections obey a beautiful nonlinear evolution
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FIG. 8: The exchange of two extra gluons, as in this graph,
will tend to give non-factorization in unpolarized cross sec-
tions.

FIG. 9: In a conventional perturbative QCD calculation for
an unpolarized partonic cross section, non-factorization by
the mechanisms discussed in this paper would first appear in
graphs of this order.

culations. Normally one performs calculations with on-
shell massless quarks and gluons, and extracts collinear
divergences that are grouped with parton densities and
fragmentation functions; any remaining divergences can-
cel between graphs. Non-factorization in the hadronic
cross section corresponds to uncanceled divergences in
quark-gluon calculations. The lowest order in which the
mechanisms we have discussed could possible give an
uncanceled divergence in unpolarized partonic cross sec-
tions is next-to-next-to-next-to-leading-order (NNNLO),
as in Fig. 9. The region for the uncanceled divergence is
where the lower gluon is collinear to the lower incoming
quark, and two of the exchanged gluons are soft. This
graph is at least one order beyond all standard pertur-
bative QCD calculations.
Because our calculations directly concern cross sec-

tions that use transverse-momentum-dependent parton
densities, a certain amount of care is needed in inter-
preting the results. The natural direction for the Wilson
lines is light-like, as from Eq. (3.8). However light-like
Wilson lines give divergences in transverse-momentum-
dependent densities [7]. These are due to rapidity di-
vergences [20] in integrals over gluon momentum; they
cancel [7] in conventional parton densities only because

of an integral over all transverse momentum in integrated
parton densities. The solution adopted by Collins, Soper
and Sterman [7] (CSS) was to define parton densities
without Wilson lines but in a non-light-like axial gauge.
The gauge-fixing vector introduces a cut-off on gluon ra-
pidity, and then an evolution equation with respect to
the cut-off was derived. The non-perturbative functions
involved in this CSS evolution equation have been mea-
sured (e.g., [21]) in fits to DY cross sections, and would
be an essential ingredient in testing non-factorization.
However, there are some unsatisfactory features of the

use of axial gauges, which are made particularly evident
in polarized cross sections. This includes complications
concerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
non-light-like Wilson line. This again obeys an equation
of the CSS form. It is also possible to use a subtractive
formalism [20, 23] with light-like Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.
To test the predicted non-factorization, we simply need

predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in
DIS and DY and to fragmentation functions in e+e− and
SIDIS [24]. Probing the SSA would be particularly in-
teresting, and such measurements are underway at Rel-
ativistic Heavy Ion Collider (RHIC) [25, 26]. The same
physics is probed in the transverse shape of jets, and
would be worth investigating.
Our counterexample applies in a kinematic region

where the normal intuitive ideas of the parton model
appear quite appropriate, even with a generalization to
kT -factorization. Therefore it forces us to question un-
der what conditions factorization is actually valid and to
what extent it has actually been demonstrated. It cannot
be assumed that naive extensions of apparently estab-
lished results are applicable beyond the cases to which
the actual proofs explicitly apply.
For hadron-hadron collisions, factorization has been

proved [5, 6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present pa-
per. But these papers do not go beyond this, to the pro-
duction of hadrons. Because factorization is important to
all aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT
hadrons. Given our counterexample to kT -factorization,
a proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron-pair has
itself large transverse momentum or when the pair’s out-
of-plane transverse momentum is integrated over a wide
range.
In fact, Nayak, Qiu and Sterman [27] have recently

given strong arguments that collinear factorization does
indeed hold in such a situations. The graphs examined

(Dasgupta	&	Salam	’02)
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Jet	radius	and	qT	joint	resumma@on	for	boson-jet	correla@on
(Chien,	DYS	&	Wu		’19)

N1(P1) +N2(P2) ! boson(pV ) + jet(pJ)| {z }
qT

+X

ph ⇠ Q(1, 1, 1)

pnJ ⇠ pJT (R2, 1, R)nJ n̄J

pt ⇠ qT (R2, 1, R)nJ n̄J

ps ⇠ (qT , qT , qT )

pn1 ⇠ (q2T /Q,Q, qT )n1n̄1

Figure 1. Boson+jet production in hadron collisions. Here pV and pJ are the momenta of the
color singlet boson and the jet, and R is the jet radius. By definition ~qT = ~p

J
T + ~p

V
T . The modes

relevant for the observable qT include the soft modes with momentum ps, and the collinear modes
along the two beam directions (n1 and n2) and the jet direction (nJ). Small-angle soft modes are
taken as an independent degree of freedom from those emitted from the jet at wide angle, and its
momentum is denoted as pt. The n1-collinear and n2-collinear modes and soft modes all have a
transverse momentum ⇠ qT , while the nJ -collinear modes carry most of the jet momentum.

quark-gluon plasma (QGP) is produced. Through interactions with the medium, jets in the

event can be significantly modified while the color-singlet boson remains intact that can

serve as a robust reference of the hard scattering process. This makes boson+jet production

a useful channel for studying the properties of QGP though the relation between transverse

momentum broadening and energy loss of jets in high-energy nuclear collisions [45], which

requires a proper resummation of large logarithms [24, 46, 47]. The kinematic information

of the boson+jet system has been explored quite extensively [48–54]. For example, the qT ,

the boson-jet momentum imbalance XJV ⌘ p
J
T /p

V
T , and the azimuthal angle decorrelation

|��JV |: the azimuthal angle between the jet and the boson as measured along the beam

direction, have been experimentally studied in Z+jet [55–59] and �+jet [60] events at the

LHC.

The rest of the paper is organized as follows. In section 2, we analyze all the relevant

degrees of freedom which contribute to qT . We give a detailed derivation of our factorized

expression (2.27) using a two-step matching procedure in SCET. In section 3, we discuss the

renormalization of all the bare functions entering (2.27) and give an all-order resummation

formula in (3.13). We explain the relation between our resummation formula with those in

[24, 25, 28]. The anomalous dimensions relevant for the NLL resummation are also given in

this section. In section 4 we analyze the Sudakov double logarithms, while in section 5.2 we
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From the above two equations, one finally has

J k(p2J , ~xT , ✏) !
1X

m=1

hJ k
m({nJ}, R pJ , ✏)⌦ Uk

m({nJ}, R ~xT , ✏)i (2.21)

where h· · · i ⌘ 1

dJ
Tr[· · · ] denotes the trace over all the color indices divided by the dimension

of the color representation of �k
nJ
, and ⌦ is a short-hand notation for

mQ
i=1

R
d⌦~nJi

/(4⇡) with

⌦~nJi
the solid angle of ~nJi in d-dimension. The jet function J k

m with m collinear particles

is defined as

P
↵0
J↵J

nJ J k
m({nJ}, R pJ , ✏) ⌘ 2n̄J · pJ(2⇡)d�1

X

spins

mY

i=1

Z
dEJiE

d�3

Ji

(2⇡)d�2
�

⇣
n̄ · pJ �

mX

i=1

n̄ · pJi
⌘

⇥ �
(d�2)

⇣ mX

i=1

~pJi?

⌘
⇥in({pJ})

���Mk
m(pJ ; {pJ})

ED
Mk†

m (pJ ; {pJ})
��� , (2.22)

and the coft function Um takes the form

Um({nJ}, R ~xT , ✏) = (2.23)
XZ

Xt

e
i
2
poutt ·n̄J~nJT ·~xT h0|U †

n̄J
(0)U †

nJ1
(0) · · ·U †

nJm
(0)|XtihXt|Un̄J (0)UnJ1

(0) · · ·UnJm
(0)|0i.

The set of nJ -collinear particles is defined by the anti-kt algorithm [74] which is used in

jet reconstruction. The phase space constraint imposed by the sequential clustering can

be quite complicated. Alternatively, here we require the angle �Rij between each pair of

collinear particles be smaller than the jet radius R,

�Rij ⌘
q
(�i � �j)2 + (⌘i � ⌘j)2 < R with i < j : 1, 2, · · · ,m. (2.24)

In the small R limit, the above requirement is equivalent to imposing the following step

functions,

⇥in(pJi , pJj ) ⌘ ✓

 
R

2 �
2pJi · pJj
p
Ji
T p

Jj
T

!
, (2.25)

which collectively is denoted by ⇥in({pJ}). The jet algorithm constraint for a coft gluon

with momentum pt is then equivalent to a cone jet algorithm since collinear particles are

clustered and define the jet direction nJ ,

⇥out(pt) ⌘ 1�⇥in(pt, nJ) = ✓

"
nJ · pt
n̄J · pt

�
✓

R

2 cosh ⌘J

◆
2
#
. (2.26)

By making the replacement in (2.21), (2.13) then gives the final factorized expression

d�

d2qTd
2pTd⌘JdyV

=
X

ijk

Z
d
2
xT

(2⇡)2
e
i~qT ·~xTSij!V k(~xT , ✏)Bi/N1

(⇠1, xT , ✏)Bj/N2
(⇠2, xT , ✏)

⇥Hij!V k(ŝ, t̂,mV , ✏)
1X

m=1

hJ k
m({nJ}, R pJ , ✏)⌦ Uk

m({nJ}, R ~xT , ✏)i. (2.27)
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Construc@on	of	the	theory	formalism		
• Mul@ple	scales	in	the	problem	
• Rely	on	effec@ve	field	theory:	SCET	+	Jet	Effec@ve	Theory	(Becher,	Neubert,	Rothen,	DYS	’15)	

(also	see	Sun,Yan,Yuan,Yuan	’18;	Buffing,Kang,Lee,Liu	’18,…)

qT ⌧ Q,R ⌧ 1
<latexit sha1_base64="7GdoLFJ+FhJ+wOuMd4KHAxonnYw="></latexit>
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Numerical	results

• All-order	resumma@on	result	is	consistent	
with	CMS	data		

• Next-to-leading	logarithms	result	has	
20-30%	scale	uncertain@es.	

• Higher-order	resumma@on	is	necessary	
• Two-loop	kernels	are	known	(Caron-Huot	’15)	
• Non-linear	evolu@on	equa@on,	new	

Monte-Carlo	algorithms	
• NLO	matching	has	been	included	(Balsiger,	

Becher,	DYS	’19)	

• Two-loop	kernels	+	NLO	matching	->	
NNLL	

• N3LL	?

��� ��� ��� ��� ��� ���

���

�

��

(Chien,	DYS	&	Wu		’19)
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Jet	defini@on

Which	par@cles	get	put	together?	

How	to	combine	their	momenta?

Jet algorithm

Recombination scheme
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Jet	TMDs	and	recombina@on	scheme

Recombina@on	schemes	in	jet	defini@ons:	
E-scheme:	add	the	four	vectors pµr = pµi + pµj

<latexit sha1_base64="0tlxsQ4F5VXPTSJ+lqqxD0tgfUI="></latexit>

Non-global	in	jet	TMD	resumma@on	(Banfi,	Dasgupta	&	Delenda	’08)	

sum	over	all	sof	partons	not	combined	with	hard	jets		

devia@on	from	qT=0	are	only	caused	by	par@cle	flow	outside	the	jet	regions

qT =
���

X

i/2 jets

~kT,i

���+O
�
k2T

�

(Winner-take-all scheme)

(Ellis,	Soper	’93)

(Bertolini,	Chan,	Thaler	’13)

pT-scheme:

Non-Global;	non-linear	RG

Global;	linear	RG

c-
''

IE
.

E
pT
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Recoil-free	azimuthal	angle	for	boson-jet	correla@on
(Chien,	Rahn,	Schrignder,	DYS,	Waalewijn	&	Wu		’20)

��� ��� ��� ��� ��� ���

��

���

���

���

first	N2LL	resumma@on

ph ⇠ Q(1, 1, 1)

Standard	SCET2

(also	see	Gao,Li,Moult,Zhu	’19,…)

pn ⇠ (p2x/Q,Q, px)nn̄
<latexit sha1_base64="tOSXyTibV3xKxAp+IpLS6H6kfA4="></latexit>

ps ⇠ (px, px, px)
<latexit sha1_base64="pNx07I/xtuUV2QwWOU3q8k5E8h8="></latexit>
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Linearly-polarized	gluon	jets

-� -� -� -� -� -� -� �

�

�

��

��

Linear-polarized	gluon	jets:

(Chien,	Rahn,	Schrignder,	DYS,	Waalewijn	&	Wu		’20)

We  provide  evidence  for  contributions  
from  linearly-polarized  gluon jet  functions

Boson-jet correlation can be used to probe linear-polarized 
gluon TMDs inside the proton (Boer,	Mulders,	Pisano,	Zhou		’16)

For	Higgs	produc@on	linearly-polarized	gluon	TMDs	arises	from	
spin	interference	between	mul@ple	ini@al-state	gluons	(Catani, 
Grazzini '10)
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Track-based	jet	defini@on

��

��

��

��

���

��� ��� ��� ��� ��� ��� ���

���
���
���
���

• The	angular	resolu@on	of	jet	measurements		is		about		0.1		radians,	limi@ng	access	
to	the	back-to-back	region	

• This	can	be	overcome	by	measuring	the	jet	using	only	charged	par@cles,	exploi@ng	
the	superior	angular	resolu@on	of	the	tracking	systems	at	the	LHC. 

Tracking	jet	func@on:

We have verified that using tracks  only  
has  a  minimal  effect  on  this  
measurement

(Chien,	Rahn,	Schrignder,	DYS,	Waalewijn	&	Wu		’20)
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Conclusion
• Jet	offers	a	rich	physics	program	at	the	LHC	
• The	boson-jet	azimuthal	decorrela@on	with	the	winner-take-all	axis	makes	the	

observable	robust	in	the	presence	of	a	large	background.	
• The	effec@ve	field	theory	approach	enables	us	to	achieve	very	precise	

predic@ons(the	first	N2LL	resumma@on,	no	theore@cal	obstacles	for	N3LL).		
• We	show	that	if	this	observable	is	measured	using	only	charged	par@cle	tracks	the	

effect	on	our	theory	predic@ons	is	minimal.		
• Our	TMD	factoriza@on	formula	presents		an	excellent	opportunity	to	shed	light	on	

the	3-D	structure	of	the	proton.		
• The	recoil-free	axis	can	suppress	effects	from	the	huge	underlying	background	in	

the	heavy-ion	collision,	and	thus	our	work	serves	as	a	baseline	for	pinning	down	
the	inner-workings	of	the	QCD	medium.



Thank you
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