Phenomenology at the LHC of composite particles from strongly interacting Standard Model fermions via four-fermion operators of Nambu-Jona-Lasinio (NJL) type

(+) Francesco Romeo and (*) She-Sheng Xue (薛社生)

(+) Vanderbilt University, Nashville (Tennessee), USA

(*) ICRANet and Phys. Dept. Sapienza University of Rome, Italy

in collaboration with

R. Leonardi, O. Panella, A. Gurrola and H. Sun(孙昊)

Journal reference: EPJC 80 (2020) 309, arXiv 1810.11420 The 6th China LHC Physics Workshop (CLHCP2020), Nov., 2020 Outline of theoretical part: Physically compelling reasons for four-fermion operators, IR- and UV-fixed points, composite states of SM particles.

For the reason (No-Go theorem) that the SM bilinear Lagrangian $\bar{\psi}\hat{O}\psi$ in fermion fields is inconsistent in a UV cutoff field theory, effective four-fermion operators of Nambu-Jona-Lasinio type $-G(\bar{\psi}_L\psi_R)(\bar{\psi}_R\psi_L)$ must be originated by some unknown dynamics at the cutoff Λ .

In the IR-domain of the energy scale v = 239.5 GeV, solve RG equations for the form factor \tilde{Z}_H and quartic coupling $\bar{\lambda}(\mu^2)$ and mass-shell conditions

$$m_t(m_t) = \bar{g}_t^2(m_t)v/\sqrt{2} \approx 173 \text{GeV}, \quad m_H(m_H) = [2\tilde{\lambda}(m_H)]^{1/2}v \approx 126 \text{GeV}.$$

to obtain unique solutions $\tilde{Z}_H(\mu)$ and $\tilde{\lambda}(\mu)$ Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122 (1961) 345, W. A. Bardeen, C. T. Hill and M. Lindner, PRD (1990) 1647; S.-S. Xue, PLB727 (2013) 308, B737 (2014) 172.

indicating the composite Higgs particle behaves an elementary particle, then binds with an elementary fermion ψ to a massive composite fermions $\Psi \sim (H\psi)$ around $\gtrsim 5$ TeV.

・ロト・西ト・ 山田・ 山田・

UV domain: an effective field theory of massive composite particles at TeV.

Composite fermions and bosons can be

- $F_R^f \sim \psi_R^f (\bar{\psi}_R^f \psi_L^f)$ (bound states of three SM fermions) with effective coupling $(g_*/\Lambda)^2 \bar{\psi}_L^f (\bar{\psi}_L^f \psi_R^f) F_R^f + h.c.$
- $\Pi^{f} \sim (\bar{\psi}_{R}^{f} \psi_{L}^{f})$ (bound states of two SM fermions) with effective coupling $(\mathsf{F}_{\Pi}/\Lambda)^{2} (\bar{\psi}_{L}^{f} \psi_{R}^{f}) \Pi^{f} + \mathrm{h.c.}$

 Λ = composite scale = O(TeV), $g_*/\Lambda^2 = 4\pi/\Lambda^2$ = a geometric cross section in the order of magnitude of inelastic processes forming composite fermions $(F_{\Pi}/\Lambda)^2$ = Yukawa coupling between composite boson and two fermionic constituents For a given Λ, the effective theory of composite particles is fully characterized in terms of the coupling F_{Π} , and the masses m_F and m_{Π}

Operator	Composite fermion F_R	Composite fermion \overline{F}_L	Composite boson Π
$(\bar{\nu}_L^e e_R)(\bar{d}_R^a u_{La})$	$E_R^0 \sim e_R(\bar{d}_R^a u_{La})$	$ar{E}_L^0 \sim ar{e}_L (ar{u}_R^a d_{La})$	$\Pi^+ \sim (\bar{d}_R^a u_{La})$
$(\bar{e}_L \nu_R^e) (\bar{u}_R^a d_{La})$	$N_R^- \sim \nu_R^e (\bar{u}_R^a d_{La})$	$\bar{N}_L^+ \sim \bar{\nu}_L^e(\bar{d}_R^a u_{La})$	$\Pi^- \sim (\bar{u}_R^a d_{La})$
$(\bar{e}_L e_R)(\bar{d}_R^a d_{La})$	$E_R^- \sim e_R(\bar{d}_R^a d_{La})$	$\bar{E}_L^+ \sim \bar{e}_L(\bar{d}_L^a d_{Ra})$	$\Pi^0_d \sim (\bar{d}^a_R d_{La})$
$(\bar{\nu}_L^e \nu_R^e) (\bar{u}_R^a u_{La})$	$N_R^0 \sim u_R^e (ar{u}_R^a u_{La})$	$ar{N}_L^0 \sim ar{ u}_L^e (ar{u}_L^a u_{Ra})$	$\Pi_u^0 \sim (\bar{u}_R^a u_{La})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

E. Eichten, J. Preskill, NPB268 (1986) 179; M. Creutz, C. Rebbi, M. Tytgat, S.-S. Xue, PLB 402(1997)341;

S.-S. Xue, the references in the first page, and PRD93, 073001 (2016); JHEP 11(2016)072; JHEP 05(2017)146

LHC phenomenology of composite particles at TeV scale

The Feynman diagram representations for the composite fermions F and boson Π are

- Today, we describe the phenomenology at the LHC considering the most left diagram.
- By a crossing symmetry applied to the fermion line $f \rightarrow f^{\dagger}$ (dashed line) the same diagram describes a 2 \rightarrow 2 production process:

$$q\bar{q} \rightarrow fF$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

f is a SM fermion

F is a composite fermion, whose flavour correspond to the SM flavour of f

Production cross-section for the process $pp \rightarrow fF$

Good agreement between analytical+numerical calculation and the results of the CalcHEP simulation, which validates the model implementation

Decay of the composite fermion *F* and decay chain of $pp \rightarrow fF$

Decay of the comopsite fermion F through 2 different channels

- $\blacksquare F \to \bar{f} qq'$
- $\blacksquare \ F \ \rightarrow \bar{f} \ \Pi^{0,\pm}$

Full decay chain is

- pp $\rightarrow fF \rightarrow f\bar{f}qq'$
- **pp** $\rightarrow fF \rightarrow f\bar{f} \Pi^{0,\pm}$

Note that

- if $\Pi = \Pi^+$ or $\Pi^- \rightarrow$, only $\Pi \rightarrow qq'$ is allow
- if Π = Π⁰, Π → G̃G̃' (G = γ, Z, W) is also possible. This case turns out to be negligible (see below).

Remember: for a given Λ , the effective theory of composite particles is fully characterized in terms of the coupling F_{Π} , and the masses m_F and m_{Π}

- $m_F/\Lambda < 1$ ($m_{\Pi}/\Lambda < 1$): insight into the dynamics of composite fermion (boson) formation
- F_{Π}/m_{Π} : m_{Π} and F_{Π} represent the same dynamics of composite boson formation
- $m_{\Pi}/m_F < 1$: to take into account *F* as composed by a composite boson and an elementary SM fermion

Decay branching ratio of F

• $F \to f\Pi \to fG\tilde{G}'$ always negligible

- $\Pi^0 \rightarrow \tilde{G}\tilde{G}'$ is the only case to depend from $m_F/\Lambda < 1$, which means the decay of F is fully characterized by the 2 parameters F_{Π}/m_{Π} and $m_{\Pi}/m_F < 1$
- the Br($F \rightarrow fq\bar{q}$ direct) and Br($F \rightarrow f\Pi \rightarrow fq\bar{q}$ indirect) tend to swap each other for different values of F_{Π}/m_{Π} this is important in terms of the signal topology, as it determines whether an intermediate resonance is produced

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Relevant channels for the process $pp \rightarrow fF$ at the LHC

F_{Π}/m_{Π}	m_{Π}/m_F	Channel	Resonances	Topology	Experimental features
15	$[\sim 0.2, \sim 1]$	$fF \to f(\bar{f}\Pi) \to f(\bar{f}(qq'))$	F, Π	Resolved w/ $\Pi \to q q'$	identification of Π and F
	≤ 0.2	$fF \to f(\bar{f}\Pi) \to f(\bar{f}(qq'))$	F, Π	Boosted	identification of F ;
					Π large-radius jet:
					2-prong, no V boson tag
≤ 0.8	[0,1]	$fF \rightarrow f(\bar{f}qq')$	F	Fully resolved	same of $F_{\Pi}/m_{\Pi} = 10$

Same consideration applies to values of F_{Π}/m_{Π} between 0.8 and 15

・ロト・西ト・ヨト ・日・ うろの

Relevant signatures for investigating the process $pp \rightarrow fF$ at the LHC

f = SM fermion; F = composite fermion, whose flavour correspond to the SM flavour of fF particles not necessarily mass degenerate \rightarrow each flavour searched for separately

f	F	Topology	Final state	LHC searches	Features not exploited in LHC searches
e	E	Fully resolved	$e^{\pm}(e^{\mp}qq')$	[28, 48]	E identification
		Resolved w/ $\Pi \rightarrow qq'$	$e^{\pm}(e^{\mp}(qq'))$	[48, 52]	E, Π identification
		Boosted	$e^{\pm}e^{\mp}J$	[28]	2-prong, no V boson tag, boosted Π decay
μ	M	Fully resolved	$\mu^{\pm}(\mu^{\mp}qq')$	[28, 48]	M identification
		Resolved w/ $\Pi \to q q'$	$\mu^{\pm}(\mu^{\mp}(qq'))$	[48, 52]	M, Π identification
		Boosted	$\mu^{\pm}\mu^{\mp}J$	[28]	2-prong, no V boson tag, boosted II decay
τ	\mathcal{T}	Fully resolved	$\tau^{\pm}(\tau^{\mp}qq')$	[49]	T identification
		Resolved w/ $\Pi \rightarrow qq'$	$\tau^{\pm}(\tau^{\mp}(qq'))$	[49]	T, Π identification
		Boosted	$\tau^{\pm}\tau^{\mp}J$	n/a	
ν	N	Fully resolved	$\nu(\nu qq')$	[50, 51]	N identification
		Resolved w/ $\Pi \to q q'$	$\nu(\nu(qq'))$	[50, 51]	N, Π identification
		Boosted	$\nu\nu J$	[55]	2-prong, no V boson tag, boosted Π deacy
j	J	Fully resolved	j(jqq')	n/a	
		Resolved w/ $\Pi \to q q'$	j(j(qq'))	n/a	
		Boosted	jjJ	n/a	
c	C	Fully resolved	c(cqq')	n/a	
		Resolved w/ $\Pi \to q q'$	c(c(qq'))	n/a	
		Boosted	ccJ	n/a	
b	B	Fully resolved	b(bqq')	n/a	
		Resolved w/ $\Pi \to q q'$	b(b(qq'))	n/a	
		Boosted	bbJ	n/a	
t	T	Fully resolved	$t(\bar{t}qq')$	n/a	
		Resolved w/ $\Pi \to q q'$	$t(\bar{t}(qq'))$	n/a	
		Boosted	$t\bar{t}J$	n/a	

- 8 different final states times 3 possible topologies = 24 distinct signatures
- F quark flavors appear to be completely unexplored
- For F = N, the ν pair stands for the pairs of the SM left-handed neutrino ν_L^e and/or sterile right-handed neutrino ν_R^e , as the latter is a candidate of dark-matter particles

We recast the CMS search (link) that probed the final state eeqq (2.3 /fb, \sqrt{s} = 13 TeV).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sensitivity for F = E at High-Lumi LHC (3 /ab)

pT e1 (e2) [j1] ≥ 180 (80) [210] GeV;
$$m_{ee} ≥$$
 300 GeV $N_s = L\sigma_s\epsilon_s$, $N_b = L\sigma_b\epsilon_b$, $S = \frac{N_s}{\sqrt{N_b}}$

Wide region of the model phase space where the existence of the composite fermions can be investigated (even with a simple analysis)

Summary and conclusion

New composite states from 4-fermion operators of NJL are well motivated from a theoretical point of view (see e.g. Xue1 Xue2 and references therein) Weak coupling regime: 4-fermion NJL operators w/ IR-fixed point that renders the elegant Higgs mechanism at low energies

Strong coupling regime: 4-fermion NJL operators w/ UV-fixed point that would render F (II) as bound states of three (two) SM elementary leptons or quarks, and a contact interactions at energies O(TeV)

- We have studied the cross-sections, branching ratios, and topologies with which the *F* particles can manifest. We find out that
 - for given \sqrt{s} and Λ values, they can be investigated comprehensively relying on only two parameters: F_{Π}/m_{Π} and m_{Π}/m_{F}
 - 8 different final states times 3 possible topologies = 24 distinct signatures
 - F quark flavors appear to be completely unexplored
 - Even signatures already explored have a wide potential of discovery with the increasing statistics accumulated at the LHC
 - For F = N, the ν pair stands for the pairs of the SM left-handed ν_L^e and/or sterile right-handed ν_R^e neutrinos, as the latter is a candidate of dark-matter particles
- Given the broad variety of new composite particles that could manifest in non-previously examined signatures at the LHC, we would like to encourage their investigations at future searches at the LHC
- There is an ongoing effort to outline the phenomenology for the direct production of composite boson