Search for CP violation in Higgs boson interaction via VBF production at the ATLAS experiment

Huirun Chen, Antonio De Maria, Lei Zhang, Shan Jin CLHCP 2020

Huirun Chen

- Baryons asymmetry observed in the universe
- Sakharov : Charge-Parity (CP) symmetry has to be violated to have different reaction rates for baryons and antibaryons

$$\Gamma(N \xrightarrow{\mathcal{L}(\Delta n_{\mathrm{Bar}} \neq 0)} f) \neq \Gamma(\bar{N} \xrightarrow{\mathcal{L}(\Delta n_{\mathrm{Bar}} \neq 0)} \bar{f})$$

- In Standard Model (SM), CP violation is encoded in the CKM matrix for the quarks
 - Source of CP violation only appears in the charged current couplings
 - Effect too small to generate the observed matter-antimatter asymmetry
- Higgs boson predicted to be a scalar ($J^{CP} = 0^{++}$) in SM with no CP-violating interactions
 - The measurement of a CP-odd contribution in the Higgs boson couplings would be a sign of physics beyond the SM (BSM)
 - This motivates searches in the Higgs sector for additional sources of CP violation

• The SM Higgs boson couplings can be summarized in the Lagrangian

$$\mathcal{L} = -\frac{m_f}{v} f \bar{f} H + \frac{m_H^2}{2v} H^3 + \frac{m_H^2}{8v^2} H^4 + \delta_V V_\mu V^\mu \left(\frac{2m_V^2}{v} H + \frac{m_V^2}{v^2} H^2\right)$$

- Main couplings with W, Z, and/or third generation quarks and leptons
- CP violation search in :
 - Yukawa couplings: consider dimension 4 with SM-like couplings which are CP-mixed
 - Bosonic couplings: consider dimension 6 BSM couplings which are CP-mixed
 - VBF $H \rightarrow \tau \tau$ analysis (Phys.Lett.B805(2020)135426)
 - VBF $H \rightarrow \gamma \gamma$ analysis (work in progress)

VBF Higgs CP analysis

- Strong VBF signal and good resolution of reconstructed Higgs boson 4-momentum
- Consider only HVV couplings
- EFT Lagrangian :

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \frac{f_{\tilde{B}B}}{\Lambda^2} H^{\dagger} B_{\mu\nu}^{\hat{\sigma}} B_{\mu\nu} H + \frac{f_{\tilde{W}W}}{\Lambda^2} H^{\dagger} W_{\mu\nu}^{\hat{\sigma}} W_{\mu\nu} H$$

 Simplify using only one CP-violating parameter (HIGZ basis)

$$ilde{d} = -rac{m_W^2}{\Lambda^2} f_{ ilde{W}W} = -rac{m_W^2}{\Lambda^2} an^2(heta_W) f_{ ilde{B}B}$$

Optimal Observable

• Use Optimal Observable to measure \tilde{d}

$$OO = rac{Re(M^*_{SM}M_{CP-Odd})}{|M^2_{SM}|}$$

- Combine full phase space information of Higgs + 2 jets final state in 1-dim. observable for small \tilde{d}
- <00>≠ 0 → CP violation neglecting rescattering effects by new light particles in loops

$VBF H \rightarrow \tau\tau \text{ analysis}$ Phys.Lett.B805(2020)135426

- Four analysis channels according to all combinations of tau decay : $\tau_{lep}\tau_{lep}$ SF, $\tau_{lep}\tau_{lep}$ DF, $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$
- Main backgrounds : Z → ττ and misidentified τ decay (for all channels), tt̄/Wt and Z → II (for the τ_{lep}τ_{lep} SF channel)
- Use BDTs to separate VBF signal from backgrounds

VBF $H \rightarrow \tau \tau$ analysis

Phys.Lett.B805(2020)135426

- Measured mean value in data consistent with SM expectation (<OO>=0)
- Confidence intervals on \tilde{d} determined through fit for various signal hypotheses
 - No rate information used in fit to have less model-dependent CP test

Channel	(Optimal Observable)
$\tau_{\rm lep} \tau_{\rm lep} {\rm SF}$	-0.54 ± 0.72
$\tau_{\rm lep} \tau_{\rm lep} {\rm DF}$	0.71 ± 0.81
$\tau_{\rm lep} \tau_{\rm had}$	0.74 ± 0.78
$ au_{\rm had} au_{\rm had}$	-1.13 ± 0.65
Combined	-0.19 ± 0.37

• Expected (Observed) $\tilde{d} \in [-0.035.0.033]$ ([-0.090,0.035]) at 68% confidence level

15

15

VBF $H \rightarrow \gamma \gamma$ analysis

- Lower br. respect to $\tau\tau$ channel yet excellent Higgs mass reconstruction
- Signal selection : 2 tight photons, 2 jets
- 4 BDT-based categories enriched in VBF
- Backgrounds :
 - ggF $H \rightarrow \gamma \gamma$
 - continuum background ($\gamma\gamma$, γ jet, jetjet)
- Continuum templates :
 - $\gamma\gamma$ shape (MC) + γjet shape (CR data)
 - fractions measured with 2x2D decomposition
 - Gaussian Process Regression : smooth out fluctuation to reduce sys.
- Spurious signal test using the templates

VBF $H \rightarrow \gamma \gamma$ analysis

- OO distribution divided into several bins optimized to achieve best significance while ensuring enough statistics
- A simultaneous fit to diphoton invariant mass performed in all OO bins
 - Signal parameterized using Crystal Ball function
 - Background parameterized using function suggested by spurious signal test

Conclusion

- Baryons asymmetry observed in the universe cannot be explained only with CP-violation predicted by Standard Model
- Higgs boson predicted to be a scalar with no CP-violating interactions
 - Additional sources of CP violation in the Higgs sector would bring to new physics
- HVV only coupling probed in VBF $H \rightarrow \tau \tau$ and $H \rightarrow \gamma \gamma$ channels but so far no sign of CP violation
- Looking forward to new searches while waiting for Run 3 data-taking and HL-LHC

Thanks for Your Attention

backups

Higgs boson production modes

• Largest cross section for gluon fusion and vector boson fusion production modes

Higgs boson decay branching ratios

Higgs decay branching ratios

- Larger branching ratio (BR) for *H* → *bb*̄, *H* → *WW*^{*} and *H* → ττ, however poor mass resolution and large background contamination
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*(\rightarrow 4I)$ have lower BR, but high mass resolution; can be used for precision measurements

 $\tau_{lep} \tau_{lep}$ same-flavor $\tau_{lep} \tau_{lep}$ DF $\tau_{lep} \tau_{had}$ $\tau_{had} \tau_{had}$

Higgs boson Higgs boson Baryon asymmetry observed in the universe Baryon asymmetry observed in the universe Baryon asymmetry observed in the universe observed in the universe

$$ilde{d} = -rac{m_W^2}{\Lambda^2} f_{ ilde{W}W} = -rac{m_W^2}{\Lambda^2} \tan^2(heta_W) f_{ ilde{B}B}$$

 $\mathcal{L} = \mathcal{L}_{SM} + rac{f_{ ilde{B}B}}{\Lambda^2} H^{\dagger} B_{\mu\nu}^{\circ} B_{\mu\nu} H + rac{f_{ ilde{W}W}}{\Lambda^2} H^{\dagger} W_{\mu\nu}^{\circ} W_{\mu\nu} H$