Measurement of VH(bb) with boosted topology at ATLAS

Cheng Chen on behalf of the ATLAS collaboration

on CLHCP 07 November 2020

Review of VH(bb) analysis

Motivation of VH(bb)

- Direct evidence for Higgs Yukawa coupling
- Largest branching ratio of Higgs decays
- Requiring VH production to suppress multi-jets background

- Previous VH(bb) results in ATLAS
 - Observation of H(bb) and VH [Phys. Lett. B 786 (2018) 59]
 - STXS measurement [JHEP 05 (2019) 141]

Observation of Hbb and VH

STXS measurement

Introduction of VH(bb) boosted analysis

- Motivation
 - Exploit the higher Higgs boson p_T regime
 - Search for deviations from the SM

- First VH(bb) boosted analysis [submitted to PLB, arXiv:2008.02508]
 - Using 139 fb⁻¹ of pp collision data collected by ATLAS in 2015 to 2018
 - Exploit higher p_T regimes with a simple and robust analysis
 - Understanding usage of boosted reconstruction techniques for VH(bb)

Analysis strategy

- Higgs candidate
 - Large-R jet (R=1.0) with pT > 250 GeV
 - ≥ 2 small-R track jets matched to Large-R jet
 - Leading 2 track jets b-tagged (<u>backup</u>)
 - Mass of Large-R jet (m_J) is considered as the final discriminant
- Three decay channels w.r.t. the vector boson decay modes
 - 0 lepton: $Z \rightarrow vv$ 1 lepton: $W \rightarrow lv$ 2 lepton: $Z \rightarrow ll$
- Combined likelihood fit is performed to estimate the significance and signal strength (µ) $u = \frac{(\sigma * BR)_{Obs}}{(\sigma * BR)_{Obs}}$
- Additional validation of the robustness: VZ analysis (backup)
- STXS measurement and EFT interpretation of the results

 $\sigma * BR$

Event selection

Selection	0 lepton channel	1 lepton channel		2 leptons channel	
		e sub-channel	μ sub-channel	e sub-channel	μ sub-channel
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single electron	$E_{ m T}^{ m miss}$	Single electron	$E_{\mathrm{T}}^{\mathrm{miss}}$
Leptons	0 baseline leptons	1 signal	lepton	2 baseline leptons among which	
		$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m GeV}$	≥ 1 signal le	pton, $p_{\rm T} > 27 { m ~GeV}$
		no second baseline lepton		both leptons of the same flavour	
				-	opposite sign muons
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 250 GeV	> 50 GeV	-		-
p_{T}^{V}		$p_{\mathrm{T}}^{V} > 250 \; \mathrm{GeV}$			
Large-R jets		at least one large-R jet, $p_{\rm T} > 250$ GeV, $ \eta < 2.0$			
Track-jets	at least two	b track-jets, $p_{\rm T} > 10$ GeV, $ \eta < 2.5$, matched to the leading large-R jet			
<i>b</i> -jets	leading two tra	ack-jets matched to the leading large- R must be b -tagged (MV2c10, 70%)			
mı		> 50 GeV			
min[$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm small} - R { m jets})$]	> 30°	-			
$\Delta \phi(E_{\rm T}^{\rm miss}, H_{\rm cand})$	> 120°	-			
$\Delta \phi (E_{\rm T}^{\rm miss}, E_{\rm T, trk}^{\rm miss})$	< 90°	-			
$\Delta y(V, H_{\text{cand}})$	-	$ \Delta y(V, H_{\rm cand}) < 1.4$			
m _{ℓℓ}		$- \qquad \qquad 66 \text{ GeV} < m_{\ell\ell} < 116 \text{ GeV}$			$m_{\ell\ell} < 116 \text{GeV}$
Lepton $p_{\rm T}$ imbalance		- $(p_{\rm T}^{\ell_1} - p_{\rm T}^{\ell_2})/p_{\rm T}^Z < 0.8$			$(p_{\rm T}^{\ell_2})/p_{\rm T}^Z < 0.8$

Vector boson selections (mainly inherited from resolved analysis)

•

•

•

Higgs boson candidate selections

Channel specific selections to enhance sensitivity

Event Categorisation Vector boson pt

-- Data

tŧ

Wt

W+jets

Z+jets

Multijet

Incertainty
WH, H→bb × 10

500 550

600

p^w_T [GeV]

650

t, s+t chan

VH, H→bb̄ (μ_{νн}=0.72)

Diboson (µ_{vz}=0.91)

- 2 categories according to vector boson pT
 - 250-400 GeV
 - ≥ 400 GeV
- This categorisation is tailored towards a differential cross section measurement

Event Categorisation

Signal Region v.s Top Control Region in 0/1L

7

• SR: 0 additional b-jet Top CR: ≥1 additional b-jet • SR: 0 additional b-jet q "leptonic" side V Large-R jet side q Signal VH(bb) Top CR: ≥ 1 additional b-jet Large-R jet side "leptonic" side W ttbar 1 w-

Event Categorisation High Purity SR (HP) vs Low Purity SR (LP)

8

- OL and 1L only
- Additional small-R jet: calo-jets not matched to Large-R jet
- Categorisation
 - HP: 0 additional small-R jets
 - LP: ≥1 additional small-R jets

Event Categorisation

Summary

	Categories					
Channel	$250 < p_{\rm T}^V < 400 { m ~GeV}$		$p_{\rm T}^V \ge 400 \text{ GeV}$			
	0 add. <i>b</i> -track-jets \geq		\geq 1 add.	0 add. <i>b</i> -track-jets		\geq 1 add.
	0 add. small- <i>R</i> jets	≥ 1 add. small- <i>R</i> jets	<i>b</i> -track-jets	0 add. small- <i>R</i> jets	≥ 1 add. small- <i>R</i> jets	<i>b</i> -track-jets
0-lepton	HP SR	LP SR	CR	HP SR	LP SR	CR
1-lepton	HP SR	LP SR	CR	HP SR	LP SR	CR
2-lepton		SR			SR	

• 14 Regions taken into account in the statistical analysis

- 10 SRs
- 4 CRs

Large-R jet mass The final discriminant

- Improve mass resolution using
 - Muon-in-jet correction
 - Kinematic fit (2 lepton channel)

Background modelling

- Use state-of-the-art MC generators
- Main backgrounds have floating normalizations and are estimated in the fit (ttbar/V+jets)
- Other normalizations are estimated from MC (single top/VV)
- Shape uncertainties on mj
- Parametrize extrapolation uncertainties across regions

Systematic Uncertainties

There are many source of systematics:

Experimental uncertainties

Large-R jets, small-R jets, MET, leptons, b-tagging, pile-up, luminosity...

• Simulated sample uncertainties

Normalization, acceptance, m_J shape and MC stat. uncertainties...

• Multi-jet background uncertainties (1 lepton channel)

These uncertainties are taken into account in the final fitting model

Statistical Analysis

- Binned likelihood fitting has been performed to extract signal strength and significance.
- The impact of systematics are considered as nuisance parameters
- 14 categories are used in the combined fitting
- The likelihood function build on the m_J distributions

mj

Results

VH(bb) boosted analysis

- Significance at 2.1σ (2.7σ exp.)
- µVHbb=0.72±0.37 compatible with SM prediction
- Analysis statistically limited
- Many important sources of uncertainties
 - Large-R jets, signal modeling, background modeling and MC stats

Source of ur	Avg. impact		
Total	Total		
Statistical		0.283	
Systematic		0.240	
Experimenta	al uncertainties		
Small- R jets	3	0.038	
Large- R jets	3	0.133	
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.007	
Leptons		0.010	
	<i>b</i> -jets	0.016	
b-tagging	c-jets	0.011	
	light-flavour jets	0.008	
	extrapolation	0.004	
Pile-up		0.001	
Luminosity		0.013	
Theoretical	and modelling uncer	rtainties	
Signal		0.038	
Background	S	0.100	
$\hookrightarrow Z + \text{jets}$		0.048	
$\hookrightarrow W + \text{jets}$		0.058	
$\hookrightarrow t\bar{t}$		0.035	
\hookrightarrow Single top quark		0.027	
\hookrightarrow Diboson		0.032	
\hookrightarrow Multijet	\hookrightarrow Multijet		
MC statistic	cal	0.092	
	Breakdown of uncer	tainties	

Results

Simplified Template Cross Section (STXS)

- Differential cross section measurement in "simplified" fiducial regions
- Sensitive to potential BSM physics
- STXS measurement in 2 p^V (GeV) bins:
 [250,400] and [400,∞]

STXS region $(y_H < 2.5, H \rightarrow b\bar{b})$	SM prediction [fb]	Result	(Tot.)	(Stat.)	(Syst.) [fb]
$W \to \ell \nu; \ p_{\rm T}^{W,t} \in [250, 400] {\rm GeV}$	5.83 ± 0.26	3.3	$^{+4.8}_{-4.6}$	$+3.6 \\ -3.4$	$+3.2 \\ -3.0$
$W \to \ell \nu; \ p_{\mathrm{T}}^{W,t} \in [400,\infty] \mathrm{GeV}$	1.25 ± 0.06	2.1	$^{+1.2}_{-1.1}$	$^{+1.0}_{-0.9}$	$^{+0.6}_{-0.5}$
$Z \to \ell \ell, \nu \nu; \ p_{\mathrm{T}}^{Z,t} \in [250, 400] \mathrm{GeV}$	4.12 ± 0.45	1.4	$^{+3.1}_{-2.9}$	$^{+2.4}_{-2.3}$	$^{+1.9}_{-1.7}$
$Z \to \ell \ell, \nu \nu; \ p_{\mathrm{T}}^{Z,t} \in [400,\infty] \mathrm{GeV}$	0.72 ± 0.05	0.2	$^{+0.7}_{-0.6}$	$^{+0.6}_{-0.5}$	$^{+0.3}_{-0.3}$

Results

EFT interpretation of STXS results

- Interpret STXS results using and Effective Field Theory (EFT) approach
- Model independent way to probe BSM physics
- STXS results parameterized as linear/quadratic polynomials in ci coefficients
- Extract 68%/95% CL limits for leading ci coefficients

Definitions of Leading coefficients

Observed confidence interval @ 68% and 95% CL

Conclusion

- First VH(bb) analysis at high-pt, using boosted techniques
 - Significance at 2.1σ (2.7σ exp.)
 - µVHbb=0.72±0.37 compatible with SM prediction
- Performed STXS measurement in an additional pTV bins
- EFT interpretation of the results
 - Plan to make it public in HEPdata

Backup

VZ analysis

Additional validation of the robustness

- Robust validation of background model and associated uncertainties
- Same analysis strategy as VHbb to search for VZ signal
 - 0 lepton: Z→vv, Z→bb
 - 1 lepton: W→lv, Z→bb
 - 2 lepton: Z→ll, Z→bb
- Results compatible with SM prediction

 $\mu_{VZ}^{bb} = 0.91^{+0.29}_{-0.23} = 0.91 \pm 0.15 (\text{stat.})^{+0.25}_{-0.17} (\text{syst.}) \qquad \sigma_{VZ}^{bb} = 5.4 (5.7) \text{ obs.} (exp.)$

B-tagging To identify jets from b-quark

B-tagging

- Depends on the good operation of the tracker
- Performance in Run 2 relying on
 - New IBL detector installed in LS1 (2013-2014)
 - Tracking optimized for high-PU and high- p_T
 - Better ML algorithm

MV2C10 tagger used in this analysis

- Boosted Decision Tree (BDT) algorithm
- Exploits the features of b-jets
 - Secondary vertex (SV)
 - Impact parameter (IP)
 - B-hadron decay chain inside jet code (JetFitter)

Rejection of light / c jets 300 / 8 at 70% b-jets efficiency

Simulation samples

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order	
Signal $(m_H = 125 \text{ GeV} \text{ and } b\bar{b} \text{ branching fraction set to } 58\%)$						
$qq \rightarrow WH \rightarrow \ell \nu b \bar{b}$	Роwнес-Box v2 [34] + GoSam [36] + MiNLO [37,38]	NNPDF3.0NLO ^(*) [30]	Pythia 8.212 [35]	AZNLO [23]	NNLO(QCD) + NLO(EW) [39,40,41,42,43,44,45]	
$qq \to ZH \to \nu\nu b\bar{b}/\ell\ell b\bar{b}$	Powheg-Box v2 + $GoSAM$ + MINLO	$NNPDF3.0NLO^{(\star)}$	Pythia 8.212	AZNLO	$\frac{NNLO(QCD)^{(\dagger)}}{NLO(EW)}$	
$gg \to ZH \to \nu \nu b \bar{b} / \ell \ell b \bar{b}$	Powheg-Box v2	$NNPDF3.0NLO^{(\star)}$	Pythia 8.212	AZNLO	NLO+ NLL [46,47,48,49,50]	
Top quark ($m_t = 172.5 \text{ GeV}$)						
$tar{t}$ s-channel t-channel Wt	Powheg-Box v2 [34,51] Powheg-Box v2 [53,34] Powheg-Box v2 [53,34] Powheg-Box v2 [56,34]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [24] A14 A14 A14 A14	NNLO+NNLL [52] NLO [54] NLO [55] Approximate NNLO [57]	
Vector boson $+$ jets						
$ \begin{array}{l} W \to \ell \nu \\ Z/\gamma^* \to \ell \ell \\ Z \to \nu \nu \end{array} $	SHERPA 2.2.1 [25,26,27,28] SHERPA 2.2.1 SHERPA 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [58,59] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [60] NNLO NNLO	
Diboson						
$\begin{array}{l} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	SHERPA 2.2.1 SHERPA 2.2.1 SHERPA 2.2.1 SHERPA 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	SHERPA 2.2.1 SHERPA 2.2.1 SHERPA 2.2.1 SHERPA 2.2.2	Default Default Default Default	NLO NLO NLO NLO	

Post-fit m, distributions in SR

0L

m_.[GeV]

Post-fit m_j distributions in top CR

OL

1L

Low p_T

High p_⊤