

Search for resonant Di-Higgs production using boosted bbtt final state at ATLAS

Shenjian Chen, <u>Bowen Zhang</u>, Lei Zhang Nanjing University 5th CLHCP - 2020/11/07

bowen.zhang@cern.ch

Introduction

• Standard Model (SM) predicts the self-interaction of the Higgs field.

• Essential to probe the shape of the potential

• Still far from established, any observation of Higgs pair production now is very likely a sign of physic beyond the Standard Model (BSM)

Production

• SM: ~90% Gluon-Gluon Fusion (ggF) and Vector Boson Fusion (VBF)

- BSM:
 - Anomolous couplings
 - ggF: $\kappa_{\lambda} \kappa_{t}$; VBF: $\kappa_{\lambda} \kappa_{v} \kappa_{2v}$
 - New resonance decays to di-Higgs
 - EW-singlet model, two-Higgs-doublet model, Randall-Sundrum model, ...

Higgs European Strategy

- Publications using ATLAS 2015~2016 dataset (36.1fb⁻¹) covers:
 - bbbb, bbWW, bbττ, bbγγ
 - WWWW, WW_YY
 - Data 15~16 combination result:
 Phys. Lett. B 800 (2020) 135103
- New publications using ATLAS Full Run2 (2015~2018, 139fb⁻¹) dataset:
 - bbbb (VBF): JHEP 07 (2020) 108
 - bbττ (boosted topology):
 arXiv: 2007.14811

★ bbττ: Medium branching ratio and relatively low background benefit by τ tagging.

Higgs Decay	bb	WW	ττ	ZZ	γγ
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.07%	
уу	0.26%	0.10%	0.03%	0.01%	<0.001%

Boosted Analysis

- Higgs bosons pair-produced by the decay of a heavy resonance are highly lorentz boosted.
- Final state objects in H→bb and H→ττ decays cannot be reconstructed as resolved objects.
 - Reconstruct as boosted di-b-jet and di-τ
- Di-τ tagging (fully-hadronic ττ decay) is used for the first time in ATLAS
- Extend the sensitive resonance search range
 - Previous bbττ analyis (Phys. Rev. Lett. 121 (2018) 191801)
 use resolved objects, search range: 260 GeV ~ 1 TeV
 - Boosted analysis: 1 ~ 3 TeV

Boosted Di-T Tagging

- Recover reconstruction efficiency loss when the two tau hadronical decay products (τ_{had}) are close.
- Seed by anti-k_T R=1.0 jets and then reclustered into anti-k_T R=0.2 sub-jets.

- Energy is calculated from two leading sub-jets, it is found to be close to simulated truth tau pair energy.
- Energy resolution ~2.5%

Boosted Di-T Tagging

- Identified by a multi-variable classifier using the information from vertices, tracks and calorimeter clusters.
- Discriminate real di-τ from quark/gluon initiated jets.

- Majority of τ_{had} produce 1 or 3 charged pions
- Require N_{track}(sub-jet) = 1 or 3
- Later the charge of τ-pair is used to define opposite-/same-sign (OS/SS) regions and to reduce multi-jet background.

$H \rightarrow bb$ and Event selection

- $H \rightarrow bb$ is reconstructed from anti- k_T R=1.0 jets (large-R jets).
- B-tagging is performed on the two leading Variable-Radius (VR) track jets that associate with the large-R jet.

Event Selection (details in the backup)						
Trigger	Large-R jet triggers (online p_{T} thresholds 360~460 GeV)					
Large-R jet p_{τ}	40~50 GeV above the trigger threshold on leading jet					
e/µ	Veto events with electrons or muons					
# Di-τ	N ≥ 1					
# Large-R jet	N \geq 1 and ΔR (large-R jet, di- τ) > 1.0					

Background Estimation

- Dominant background is Zττ + heavy flavour (hf) jets → normalised by Zee/μμ+hf CR.
- Multi-jet → Estimated by jet to di-τ fake factor calculated from 0 b-tag SS CR.

$$FF = \frac{N_{FF SS}^{pass}}{N_{FF SS}^{fail}} \quad N_{RoI}^{mis-ID} = N_{RoI}^{fail} \times FF(p_T)$$

- Other minor backgrounds are estimated by simulated samples.
- Background with truth-matched di-τ are corrected by the di-τ tagging efficiency scale factor derived in a Zττ enriched region.

Signal Region and Result

- 2 events are observed in SR (1.36 expected)
- Additional selections are applied on visible di-Higgs mass to improve sensitivity for high resonance mass hypothesis.

- Single-bin counting experiment is performed.
- No significant excess above SM prediction.
- Set upper limits on resonant di-Higgs production
 via a narrow width scalar particle.

Summary

- Di-Higgs production can be enhanced by new resonance particle that decays to HH.
- Present a search for such process using bbττ final state with boosted topology.
- With full Run2 (139fb⁻¹) dataset, no excess is observed.
- Upper limits are set on resonant di-Higgs production cross section via narrow width scalar.

Thanks for listening!

Additional Materials

Energy scale and resolution of the di- τ reconstruction as a function of the p $_{\tau}$ of the di- τ system at generator level.

identification efficiency of boosted di- τ objects, as a function of their pT at generator level and the number μ of pile-up interactions.

	LRJ	VR track jet	Di-t	Electron	Muon
рт	p⊤ > 300 GeV	рт > 10 GeV	Di-т рт > 300 GeV Subjet pт > 50 GeV	p⊤ > 7 GeV	p⊤ > 7 GeV
η	η < 2.0	η < 2.5	η < 1.37 or 1.52 < η < 2.0	η < 1.37 or 1.52 < η < 2.47	η < 2.5
WP	-	For b-tagging: 70%, MV2C10	Medium	ID: Loose, No isolation requirements	ID: Loose, Isolation: FixedCutLoose
Other		Two leading track jets in LRJ are considered for b-tagging N _{Track} > 1 Events with collinear VR track jets are vetoed	$\begin{array}{l} 2 \leq N_{subjets} \leq 3, \\ \Delta R_{lead,subl} < 0.8, \end{array}$ $\begin{array}{l} N_{tracks} = 1 \text{ or } 3, \\ S = q^{lead} \cdot q^{sublead} = \pm 1 \\ S = +1 \ (SS) \ for \ fake \ estimation, \\ S = -1 \ (OS) \ for \ signal \ regions \end{array}$ $\begin{array}{l} Events \ with \ fail-ID \ di-taus \\ (0.4 < BDT < 0.72) \\ used \ in \ fake \ estimation \end{array}$		

Analysis Regions

Selection on $m_{HH}^{\rm vis}$	> 0 GeV	> 900 GeV	> 1200 GeV
$Z\tau\tau$ +hf	$0.89 \pm 0.25^{+0.37}_{-0.35}$	$0.75 \pm 0.21^{+0.47}_{-0.37}$	$0.17 \pm 0.05 \pm 0.07$
$Z\tau\tau$ +lf	$0.05 \pm 0.05 \pm 0.03$	$0.05 \pm 0.05 \pm 0.03$	-
Multi-jet	$0.18 \pm 0.03 \pm 0.14$	$0.17 \pm 0.03 \pm 0.13$	$0.09 \pm 0.02 \pm 0.07$
ZH	$0.11 \pm 0.01 \pm 0.04$	$0.09 \pm 0.01 \pm 0.03$	$0.02 \pm - \pm 0.01$
Others	$0.13 \pm 0.05^{+0.15}_{-0.07}$	$0.13 \pm 0.05^{+0.15}_{-0.07}$	$0.05 \pm 0.03^{+0.12}_{-0.03}$
m of backgrounds	$1.36 \pm 0.26^{+0.42}_{-0.38}$	$1.19 \pm 0.23^{+0.51}_{-0.40}$	$0.33 \pm 0.07^{+0.16}_{-0.10}$
Data	2	2	0

m_x [GeV]

Selection	1.0 TeV	1.1 TeV	1.2 TeV	1.4 TeV	1.6 TeV	1.8 TeV	2.0 TeV	2.5 TeV	3.0 TeV
Trigger and object definitions	24.1	33.4	40.4	50.0	55.7	59.1	60.9	59.8	53.4
Di- τ pre-selections: $p_{\rm T} > 300$ GeV, $ \eta < 2.0$ (exclude 1.37-1.52)	19.5	28.6	36.1	47.0	53.7	58.0	60.3	59.5	51.9
Requirements on the number, $p_{\rm T}$, ΔR and charges of sub-jets in the di- τ object	8.75	13.1	16.9	22.2	25.6	27.5	28.3	25.7	18.3
Di- τ BDT-based identification	6.04	9.20	11.9	15.9	18.5	20.0	20.4	17.5	11.5
Requirements on number of tracks of two leading sub-jets of the di- τ object	6.01	9.14	11.9	15.8	18.5	19.9	20.3	17.4	11.5
Di- τ tagger efficiency correction	5.04	7.67	9.94	13.3	15.5	16.7	17.0	14.6	9.63
Trigger-dependent $p_{\rm T}$ requirements of the large- R jet	1.65	4.34	7.28	11.7	14.4	16.0	16.5	14.4	9.47
Large- <i>R</i> jet pre-selections: $\Delta R > 1.0$ w.r.t the di- τ object, $p_T > 300$ GeV, $ \eta < 2.0$ and $m_J < 50$ GeV	1.36	3.67	6.24	10.2	12.6	14.1	14.6	13.0	8.59
Two <i>b</i> -tagged track-jets, including b-tagging efficiency correction	0.43	1.21	2.13	3.28	3.86	4.09	4.05	3.20	1.91
Opposite charge of two leading sub-jets of di- τ , $\Delta \varphi$ (di- τ , MET) < 1, large- R jet mass window and visible HH invariant mass selection	0.28	0.87	1.60	2.49	2.91	3.11	3.08	2.45	1.46

Table 5: Efficiencies (in percent) at each stage of the event selection for various signal mass hypotheses.