VLVL → VLVLh and Higg Selfcoupling Measurements

谌俊谋(Junmou Chen)

暨南大学 (Jinan University, Guangdong) In collaboration with Chih-Ting Lu, Yongcheng Wu

\\\\ Main Channel to measure Higgs
self-couplings at LHC: gg> HH

Feynman diagrams in SM

New channels and new approaches?

1. Higgs field in SM: Higgs boson and would-be Goldstone bosons form a SU(2) doublet:

$$\Phi^{\pm} = \begin{pmatrix} \phi^{\pm} \\ \frac{1}{\sqrt{2}}(h+i\phi^0) \end{pmatrix}$$

2. Goldstone equivalence theorem

1812.09299 Measuring Higgs couplings with longitudinal external states.

Higgs Couplings without the Higgs HCHwH Brian Henning, Davide Lombardo, Marc Riembau, and Francesco Riva \mathcal{O}_{y_t} κ_t Départment de Physique Théorique, Université de Genève, 24 quai Ernest-Ansermet, 1211 Genève 4, Switzerland \mathcal{O}_6 κ_{λ} $\kappa_t: pp \to jt + V_L V'_L$ (4) $(e^+e^- \rightarrow ll + \{tbW_L, tbZ_L, ttW_L, ttZ_L\})$ \mathcal{O}_{WW} $\kappa_{Z\gamma}$ $\kappa_{\lambda}: pp \to jjh + V_L V'_L, \ (e^+e^- \to llh V_L V'_L)$ (5) \mathcal{O}_{BB} $\kappa_{\gamma\gamma}$ $pp \rightarrow jj + 4V_L, \ (e^+e^- \rightarrow ll \, 4V_L)$ (6) \mathcal{O}_r κ_V $\kappa_{\gamma\gamma,Z\gamma}: pp \to jj + V'V, \ (e^+e^- \to llV'V)$ (7) $\kappa_V : pp \to jj + V_L V'_L, \ (e^+e^- \to ll V_L V'_L)$ (8) \mathcal{O}_{gg} κ_{g}

 $\kappa_g: pp \to W_L^+ W_L^-, Z_L Z_L, \ (e^+ e^- \to lljj) \qquad (9)$

(9) (9) (9)

Growth

 $\sim \frac{E^2}{\Lambda^2}$

 $\sim rac{vE}{\Lambda^2}$

 $\sim \frac{E^2}{\Lambda^2}$

 $\sim \frac{E^2}{\Lambda^2}$

Kinda follow-up to this paper.

• Parameterization scheme: SMEFT.

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \dots$$

Related to Higgs physics

 $\mathcal{L} = \mathcal{L}_{SM} - c_6 (\Phi^{\dagger} \Phi)^3 + c_{\Phi_1} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) + c_{\Phi_2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi)^* (\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi)$ $+ c_{W^3} \epsilon^{abc} W^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{b\mu}_{\rho} + c_{\Phi^2 W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} W^{a\mu\nu} + c_{\Phi^2 B^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu}$ $+ c_{\Phi^2 WB} \Phi^{\dagger} \tau^a \Phi W^a_{\mu\nu} B^{\mu\nu}$ (1)

• Higgs potential

$$V(\Phi^{\dagger}\Phi) = -\mu^2 \Phi^{\dagger}\Phi + \lambda_h (\Phi^{\dagger}\Phi)^2 + C_6 (\Phi^{\dagger}\Phi)^3$$

2 Amplitudes $M(W_L W_L \to W_L W_L h) \simeq M(\phi \phi \to \phi \phi h)$ (Focus on c6)

• 1. No propagator $(\Phi^{\dagger}\Phi)^{3}$ operator:

 $\mathcal{A}_0^{\phi^+\phi^-\to\phi^+\phi^-h} = \lambda_{(\phi^+\phi^-)^2h} = -12C_6vi$ Since C_6 is suppressed by $\frac{1}{\Lambda^2}$, $\mathcal{A}_0 \sim \frac{v}{\Lambda^2}$.

Main entrance to modify Higgs coupling, the effect has to be strong. (Amplitude sensitive to .)

Same for
$$\phi^+\phi^- \to hhh$$
 ($W^+_L W^-_L \to hhh$)

2. Amplitudes Feynman diagrams

• 2. One propagator. 8 diagrams. $A_1 = \mathcal{M}_4' \frac{\imath}{a^2 - m^2} \mathcal{M}_3'$ $\mathcal{A}_{1}^{BSM} \simeq -i2C_{\Phi_{1}} \frac{m_{h}^{2}}{v} \left(\frac{(p_{1}+p_{2})^{2}}{(p_{4}+p_{5})^{2}-m_{W}^{2}} + \frac{(p_{1}+p_{2})^{2}}{(p_{3}+p_{5})^{2}-m_{W}^{2}} + \frac{(p_{1}-p_{3})^{2}}{(p_{2}-p_{5})^{2}-m_{W}^{2}} + \frac{(p_{2}-p_{4})^{2}}{(p_{1}-p_{5})^{2}-m_{W}^{2}} \right)$ $-iC_{\Phi_1}\frac{m_h^2}{v}\left(\frac{(p_1+p_2)^2}{(p_2+p_4)^2-m_1^2}+\frac{(p_3+p_4)^2}{(p_1+p_2)^2-m_1^2}+\frac{(p_1-p_3)^2}{(p_2-p_4)^2-m_1^2}+\frac{(p_2-p_4)^2}{(p_1-p_2)^2-m_1^2}\right) \quad (8)$ So we have $\mathcal{A}_1^{BSM} \sim \frac{v}{\Lambda^2}$. $\mathcal{A}_1^{SM} \sim \frac{v}{E^2}$.

 $\phi^+\phi^- \rightarrow hhh$: effective number of diagrams = 4.

2 Amplitudes Feynman diagrams

• 3. Two propagators. Full amplitude complicated, scaling simple.

$$A_2 \simeq A_2^a + A_2^b + A_2^c \sim \frac{v}{\Lambda^2} + \frac{v}{E^2}$$
ms (not conclusive).

- 47 diagrams (not conclusive).
- Effective no. of diagrams for $\phi^+\phi^- \rightarrow hhh$: 8

2 Amplitudes Summary of the amplitude

$$\mathcal{A}(W_L^+ W_L^- \to W_L^+ W_L^- h) = \mathcal{A}^{\rm SM} + \mathcal{A}^{\rm BSM}$$
(13)

with

$$\mathcal{A}^{\rm SM} \simeq \frac{v}{E^2} \qquad \mathcal{A}^{\rm BSM} \simeq \frac{v}{\Lambda^2}$$
 (14)

The ratio between BSM and SM is approximately

$$\frac{\mathcal{A}^{BSM}}{\mathcal{A}^{SM}} \sim \frac{E^2}{\Lambda^2} \tag{15}$$

3.Cross section

•

• Amplitudes:
$$\frac{\mathcal{A}^{BSM}}{\mathcal{A}^{SM}} \sim \frac{E^2}{\Lambda^2}$$

- Two additional factors:
- 1) Log enhancement from infrared singularities (soft, and collinear)
 - 2) No. of diagrams (Only one diagram for C6)
- Sensitivity to new physics don' t necessary translate to cross sections

3 Cross section Cross section: $V_L V_L \rightarrow V_L V_L h \& V_L V_L \rightarrow hhh$

• Plots with c6 (C6=c6/ Λ^2), $\Lambda = 1$ TeV)

4. Full Simulation

$$pp \rightarrow jjhhh$$

p p > j j hhh with only basic cut : delta_eta_jj > 2.5

	14TeV	27TeV		100TeV		
c6=1	4.741	E-06	1.6	17E-05	9.126E-05	
c6=-1	2.798	E-05	5.5	31E-05	0.0002836	
c6=2	3.874	E-06	1.6	69E-05	0.0001202	
c6=-2	4.425	E-05	0.0	001177	0.0004233	

- 14 TeV: Only \sim 10 events at c6=-2,
- For h> bbar: 100 *0.6^3 ~ only 3-4 events
- 27 TeV: ~ 3000 events for c6=-2. (Assuming integrated luminosity is 3000fb^{-1})
- h> bbar: 3000*0.6^3 ~ 600 events
- Very small SM cross sections: clean channel, but only in higher energies.

4. Simulation

HL-LHC

- $pp \to jjW_L^{\pm}W_L^{\pm}h$
- 1. No significant enhancement for c6=-2.
- File no.
 C6.
 Cross section (pb) (sqrts=14TeV)

 0
 0
 2.854e-05 ± 7.3e-08

 2
 -2
 2.99e-05 ± 5.7e-08

- 2. only ~ 100 events
- For w+> I+ v; h> bbar: $100 * 0.2^2 * 0.6 \sim only 2-3$ events
- 3. Similarly for $l^+l^- \rightarrow v_l \bar{v}_l W_L^+ W_L^- h$ at sqrts <= 1TeV
- 4. Needs cuts to reduce log enhancement from SM.

4. Simulation

Madgraph Simulation: VV \rightarrow VVh

• Ongoing investigation. Example:

$$e^+e^- \to \nu_e \bar{\nu}_e W_L^+ W_L^- h$$

File no.	C6.	Cross section	
		cut16(sqrts=14TeV)	
0	0	<u>1.781e-07 ± 2.4e-09</u>	
1	-1	4.129e-06 ± 8.2e-09	

• m_{ll}^2 >0.3TeV. pT(w+/w-)>0.6TeV, pT(h)>0.6TeV

Conclusions

- VBS with 3-final states provide excellent channels for measuring higgs self-couplings, especially deviation of Higgs potential in future high energy colliders:
- 1.In high energy, Amplitudes of $V_L V_L \rightarrow V_L V_L h$ or hhh: $\frac{\mathcal{A}^{BSM}}{\mathcal{A}^{SM}} \sim \frac{E^2}{\Lambda^2}$
- 2.Origin: 5-point scalar vertices from c6 operator.
- 3.Behavior of cross section follows for $pp \to jjhhh/l^+l^- \to v_l \bar{v}_L hhh$
- 4. Cuts are needed for $pp \rightarrow jjW_L^{\pm}W_L^{\pm}h / l^+l^- \rightarrow v_l\bar{v}_lW_L^+W_L^-h$
- 5. More to come.