

Experimenta apparatus

Results and discussion

Conclusion

Open and hidden heavy-flavour production as a function of multiplicity in small systems at the LHC

Yanchun Ding ^{1,2} for the ALICE Collaboration

Central China Normal University¹, Institut de Physique des Deux Infinis de Lyon²

The 6th China LHC Physics Workshop (Online) Tsinghua University November 6-9, 2020

Outline

Introduction

Experimenta apparatus

Results and discussion

Conclusion

1 Introduction

2 Experimental apparatus

3 Results and discussion

4 Conclusion

Introduction

Charged-particle multiplicity dependence study:

- Particle production mechanisms, such as Multiple Parton Interactions (MPI)
- Interplay between soft and hard processes

Introduction

Charged-particle multiplicity dependence study:

- Particle production mechanisms, such as Multiple Parton Interactions (MPI)
- Interplay between soft and hard processes
- Medium-like effects: such as suppression of excited states w.r.t ground state in high multiplicity pp collisions?

CMS-PAS-BPH-14-009

Experimental apparatus

Results and discussion

Conclusion

Experimental apparatus

Experimenta apparatus

Results and discussion

Conclusion

Results and discussion

 ${\rm J}/\psi$ production as a function of multiplicity in pp collisions (mid-rapidity)

- → J/ψ increases faster than linear with multiplicity
- → The trend of data is fairly reproduced by various models

Phys. Lett. B (2020) 135758

Experimenta apparatus

Results and discussion

Conclusion

Results and discussion

Charmonium production as a function of multiplicity in pp collisions (forward rapidity)

- → Self-normalised yield: compatible with linear dependence on multiplicity (unlike mid-y)
- → No energy dependence

Experimenta apparatus

Results and discussion

Conclusion

Results and discussion

 $\Upsilon(1S)$ and $\Upsilon(2S)$ production as a function of multiplicity in pp collisions (forward rapidity)

→ $\Upsilon(1S)$ and $\Upsilon(2S)$: compatible with charmonium at forward rapidity

Results and

discussion

Results and discussion

Self-normalised yield ratio as a function of multiplicity in pp collisions

- → $\psi(2S)/J/\psi$: maximum deviation from unity around 2.2 σ (Hint of $\psi(2S)$ suppression w.r.t J/ψ at high multiplicity?)
- \rightarrow The suppression is stronger in comover approach than in data at high multiplicity
- → $\Upsilon(2S)/\Upsilon(1S)$: compatible with charmonium within uncertainties

Results and

discussion

Results and discussion

 J/ψ production as a function of multiplicity in p-Pb collisions

- → Slightly faster-than-linear increase at backward rapidity (Pb-going)
- → Slower-than-linear increase at forward rapidity (p-going)
- $\boldsymbol{\rightarrow}\,$ Data favours the model prediction without considering hydro at both rapidity intervals

JHEP 09 (2020), 162

Results and

discussion

Results and discussion

HFe and HF μ production as a function of multiplicity in pp collisions

- \rightarrow Faster than linear increase of open heavy-flavour hadron decay leptons
- → A steeper increase at high p_T
- → PYTHIA 8.2 including MPI effects well reproduces data in all p_T intervals

Conclusion

Conclusion

Hidden heavy flavours

pp collisions:

- Rapidity dependence (auto-correlations?)
- No energy dependence
- Results are consistent between charmonium and bottomonium at forward rapidity

p-Pb collisions:

• Rapidity dependence (initial state effects?)

Open heavy flavours

Results show a faster than linear enhancement with charged-particle multiplicity in $\ensuremath{\mathsf{pp}}$ collisions

Experimenta apparatus

Results and discussion

Conclusion

Thank you!