

Strangeness production in jets and underlying events in pp, p-Pb and Pb-Pb collisions with ALICE at LHC

Pengyao Cui (崔 捧 瑶)

(for the ALICE Collaboration)

Central China Normal University

11/08/2020

Motivation

- Enhancement of Λ/K_S^0 ratio observed at intermediate p_T at high multiplicity in pp, p-Pb and Pb-Pb collisions w. r. t that at low multiplicity
- Production of multi-strange particles increases with multiplicity
 - Similar behavior among different systems

Nature Phys. 13 (2017) 535-539

Pengyao Cui (CCNU)

 Jets provide a nature reference to separate particles produced in hard processes and underlying events → further constraints on particle production mechanisms in different systems

 Jets provide a nature reference to separate particles produced in hard processes and underlying events → further constraints on particle production mechanisms in different systems

• pp

- Study the jet fragmentation properties in vacuum
- Provide reference for p-Pb and Pb-Pb systems

• p-Pb

 A new insight into understanding the origin of flow-like behavior observed at high multiplicity in small systems

Pb-Pb

Study medium modified jet fragmentation and potential constraint on jet-medium interactions

 Jets provide a nature reference to separate particles produced in hard processes and underlying events → further constraints on particle production mechanisms in different systems

• pp

- Study the jet fragmentation properties in vacuum
- Provide reference for p-Pb and Pb-Pb systems

• p-Pb

• A new insight into understanding the origin of flow-like behavior observed at high multiplicity in small systems

• Pb-Pb

- Study medium modified jet fragmentation and potential constraint on jet-medium interactions
- Strange particle in Jet Cone (JC particles)
 - *R*(Str, jet) < 0.4

 Jets provide a nature reference to separate particles produced in hard processes and underlying events → further constraints on particle production mechanisms in different systems

• pp

- Study the jet fragmentation properties in vacuum
- Provide reference for p-Pb and Pb-Pb systems

• p-Pb

• A new insight into understanding the origin of flow-like behavior observed at high multiplicity in small systems

• Pb-Pb

- Study medium modified jet fragmentation and potential constraint on jet-medium interactions
- Strange particle in Jet Cone (JC particles)
 - *R*(Str, jet) < 0.4
- Underlying event
 - PC: strange particles in Perpendicular Cone w. r. t. jet axis
 - OC: strange particles Outside jet cone
 - NJ : strange particles in events without jet in $p_{\rm T} > 5~{\rm GeV/c}$

 Jets provide a nature reference to separate particles produced in hard processes and underlying events → further constraints on particle production mechanisms in different systems

• pp

- Study the jet fragmentation properties in vacuum
- Provide reference for p-Pb and Pb-Pb systems

• p-Pb

• A new insight into understanding the origin of flow-like behavior observed at high multiplicity in small systems

• Pb-Pb

- Study medium modified jet fragmentation and potential constraint on jet-medium interactions
- Strange particle in Jet Cone (JC particles)
 - *R*(Str, jet) < 0.4
- Underlying event
 - PC: strange particles in Perpendicular Cone w. r. t. jet axis
 - OC: strange particles Outside jet cone
 - NJ : strange particles in events without jet in $p_{\rm T} > 5~{\rm GeV/c}$

ALICE setup and data samples

- Strangeness reconstruction
 - $K_S^0 \rightarrow \pi^+ + \pi^-$ (BR 69.2%)
 - $\Lambda \rightarrow p + \pi^-$ (BR 63.9%)
 - $\Xi^- \to \Lambda + \pi^- \to p + \pi^- + \pi^-$ (BR 63.9%)
- Jet reconstruction
 - Charged track selection: $|\eta| < 0.9, \ p_{\rm T} > 0.15 \ {\rm GeV/c}$
 - Jet finder: anti- $k_{\rm T}$, R = 0.4, $|\eta_{\rm jet}| < 0.35$

- Data samples
 - pp collisions at \sqrt{s} = 13 TeV
 - p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV
 - Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

- TPC(Time Projection Chamber)
 - |η|<0.9
 - Charged particle tracking
 - Particle identification
- ITS(Inner Tracking System)
 - |η|<0.9
 - Vertex reconstruction
 - Event trigger
- V0A + V0C
 - 2.8 < η < 5.1 and -3.7 < η < -1.7
 - Event multiplicity class determination
 - Event trigger

Results of pp collisions

- The production density of strange hadrons in jets (JE) is harder than in the underlying event (UE)
- UE distributions harder than inclusive --- bias in events with the presence of jets

Results of pp collisions

- The Λ/K_S^0 ratio in UE is consistent with the inclusive one
- The ratio in jets is clearly different from the inclusive one at low and intermediate $p_{\rm T}$
- Ξ/Λ --- further exploration of production mechanisms in jets and UE with multi-strange particles
- Ξ/Λ is almost $p_{\rm T}$ independent in JE

Results of pp collisions

- The Λ/K_S^0 ratio in UE is consistent with the inclusive one
- The ratio in jets is clearly different from the inclusive one at low and intermediate $p_{\rm T}$
- Results at $\sqrt{s} = 7$ TeV are consistent with that at $\sqrt{s} = 13$ TeV within uncertainties
- Measurements at \sqrt{s} = 7 TeV: a hint of R_{jet} (Str, jet) dependence
 - Caveat: the potential residual UE background effect (?)

Results of pp and p-Pb collisions

- The Λ/K_S^0 ratio in UE is consistent with the inclusive one
- The ratio in jets is clearly different from the inclusive one at low and intermediate $p_{\rm T}$
- Results at $\sqrt{s} = 7$ TeV are consistent with that at $\sqrt{s} = 13$ TeV within uncertainties
- Measurements at $\sqrt{s} = 7$ TeV: a hint of R_{jet} (Str, jet) dependence
- The Λ/K_S^0 in JE in pp consistent with p-Pb within uncertainties in R = 0.4

Pengyao Cui (CCNU)

Result of p-Pb collisions

• The ratios depend only slightly on the jet resolution parameter *R* and do not vary with $p_T^{\text{jet,ch}}$ • The Λ/K_S^0 in JE are compatible with PYTHIA8 predictions in pp collisions

Result of Pb-Pb collisions

- The different behavior from PYTHIA is seen in both K_S^0 and Λ at low p_T in Pb-Pb central
- The ratio in jets is far below the inclusive one in Pb–Pb collisions
- The ratio in jets is compatible within systematical and statistical errors to that in pp collisions

Summary

- Production of V⁰s (K⁰_S and Λ) and Ξ has been investigated in jets and the UE in pp collisions at $\sqrt{s} = 13$ TeV
- The Ξ/Λ ratio has been investigated in jet and the UE in pp collisions with ALICE
- Λ/K⁰_S ratio enhancement is not present when the particles are within an energetic jet in pp, p-Pb and Pb-Pb collision systems
- These measurements provide a new constrain on **E** production mechanism

Summary

- Production of V⁰s (K⁰_S and Λ) and Ξ has been investigated in jets and the UE in pp collisions at $\sqrt{s} = 13$ TeV
- The Ξ/Λ ratio has been investigated in jet and the UE in pp collisions with ALICE
- Λ/K⁰_S ratio enhancement is not present when the particles are within an energetic jet in pp, p-Pb and Pb-Pb collision systems
- These measurements provide a new constrain on E production mechanism

Thanks for your attention !

