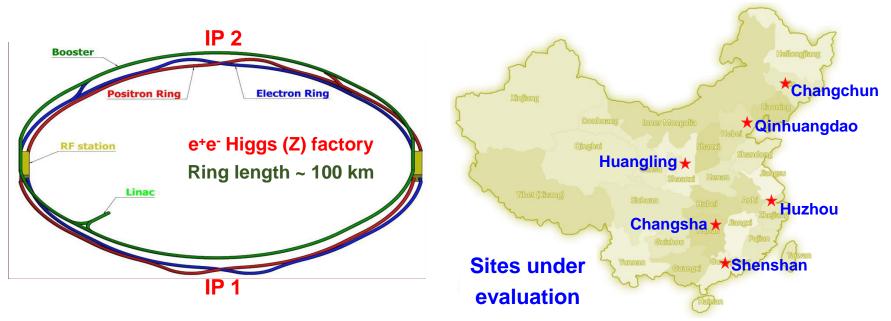
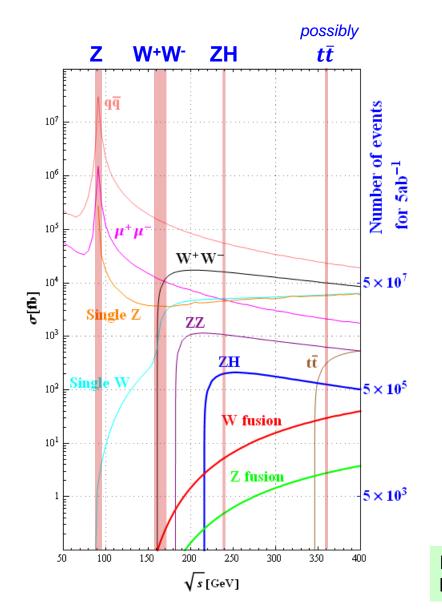
The CEPC R&D


Jianchun Wang (For the CEPC physics and detector working group)

> The 6th China LHCP Workshop Nov 6-9, 2020, Beijing

Circular Electron Positron Collider


- The CEPC aims for high precision measurements of Higgs, Z & W bosons, and search for new physics, in 2030's.
- Milestones achieved: Kick-off (2013.9), Pre-CDR(2015.3), CDR (2018.8/10).
- The CEPC working groups have very active R&D. Need to form international collaborations and release TDRs in the coming years.
- CEPC will operate at ZH, Z, W⁺W⁻ and possibly tt
 text
 text
- Upgradable to a pp collider (SppC) with $\sqrt{s} \sim 50-100$ TeV.

Physics Motivation

Update since CDR

Operation mode	ZH	Z	W^+W^-
\sqrt{s} (GeV)	~240	~91.2	158-172
$L / IP (10^{34} \text{ cm}^{-2}\text{s}^{-1})$	3 (5)	32 (102)	10
Run time (years)	7	2	1
$\int L dt$ (ab ⁻¹ , 2 IPs)	5.6	16	2.6
Event yields	1×10 ⁶	7×10 ¹¹	2×10 ⁷

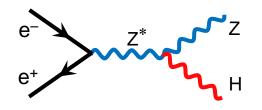
 Higgs factory & Z factory: > 10⁶ Higgs, 10¹² Z, and 10⁸ W bosons.

High precision Higgs, EW measurements,

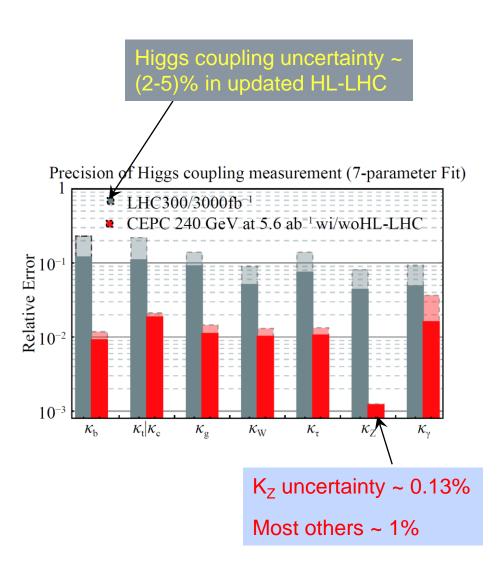
□ Study flavor physics (b, c, tau) and QCD,

□ Rare decays,

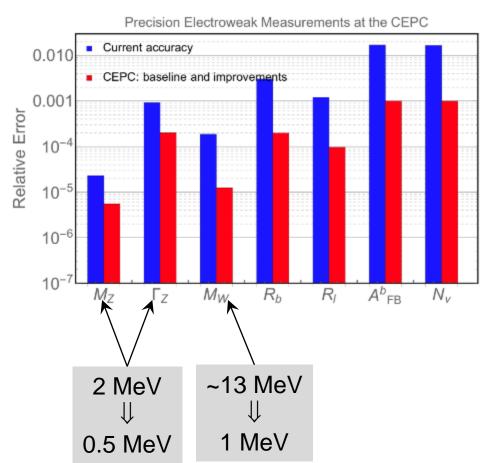
Probe new physics.


D ...

Reference: discussions in the CEPC/FASER session by Yaquan Fang, Lingfeng Li, Jiarong Yuan, & Qi Liu.



Higgs Coupling Measurements

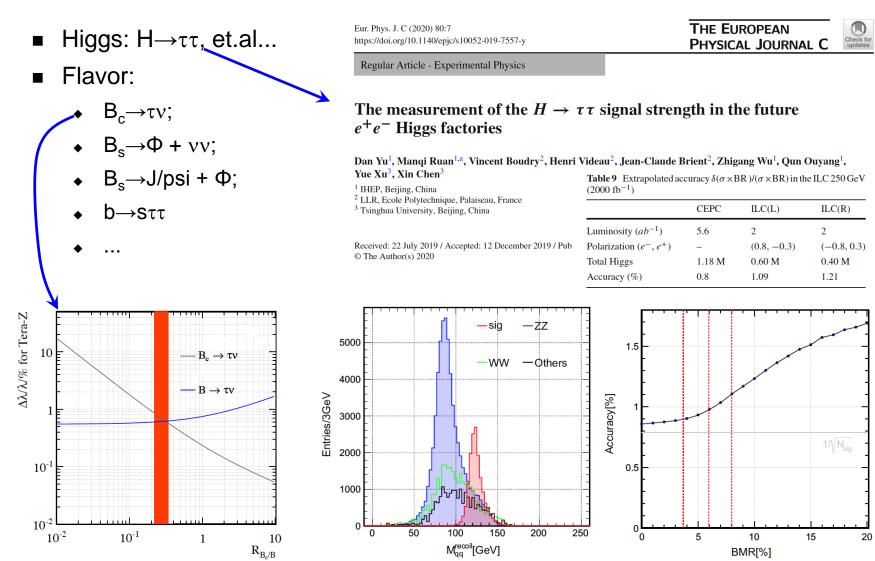


- Higgs boson candidates can be identified through Z recoil mass without tagging its decays
- Model independent measurement of the Higgs boson width.
- ➢ Delivers ≤1% precision in some key measurements of Higgs properties, some not accessible @ LHC.
- Sensitive to invisible decay modes of Br ~0.3%, with the recoiling mass technique.
- Sensitive to exotic decay channels.

Precision of Electroweak Observables

- > Two years at the Z pole ($\sqrt{s} = 87.9$, 90.2, 91.2, 92.2, 94.3 GeV). Much more data will be taken on-peak.
- > One year at WW threshold ($\sqrt{s} = 157.5$, 161.5, 162.5, 172.0 GeV). Runs @172 GeV mainly for $\alpha_s(m_W^2)$ measurement.
- Beam energy spread ~0.08% @ Z, and ~0.1% @WW.
- Beam energy will be measured by the depolarizing resonance method, which was developed at LEP. For CEPC, δ(Ecm) ~0.5 MeV at WW.
- > Relative luminosity measurement uncertainty $\delta L / L \sim 10^{-4}$.

Flavor Physics

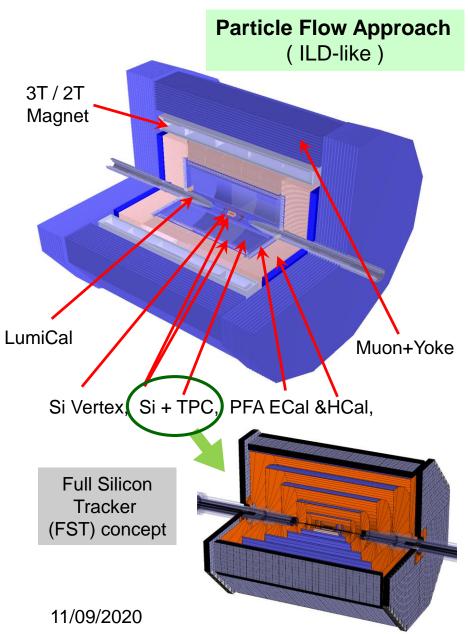

CEPC produces a huge sample of *b*, *c* & *τ*, especially at the Z-pole, provides a unique opportunity for the flavor physics, including CP violation, rare decays and probing new physics.

Observable	Current sensitivity	Future sensitivity	Tera- Z sensitivity
$BR(B_s \rightarrow ee)$	$2.8 \times 10^{-7} (\text{CDF}) [438]$	$\sim 7 imes 10^{-10}$ (LHCb) [435]	$\sim {\rm few} \times 10^{-10}$
$BR(B_s \rightarrow \mu \mu)$	0.7×10^{-9} (LHCb) [437]	$\sim 1.6 imes 10^{-10} ({ m LHCb}) [435]$	$\sim {\rm few} \times 10^{-10}$
$BR(B_s \rightarrow \tau \tau)$	5.2×10^{-3} (LHCb) [441]	$\sim 5 \times 10^{-4}$ (LHCb) [435]	$\sim 10^{-5}$
R_K, R_{K^*}	$\sim 10\%$ (LHCb) [443, 444]	~few% (LHCb/Belle II) [435, 442]	\sim few %
${\rm BR}(B\to K^*\tau\tau)$	-	$\sim 10^{-5}$ (Belle II) [442]	$\sim 10^{-8}$
${\rm BR}(B\to K^*\nu\nu)$	4.0×10^{-5} (Belle) [449]	$\sim 10^{-6}$ (Belle II) [442]	$\sim 10^{-6}$
$BR(B_s \rightarrow \phi \nu \bar{\nu})$	1.0×10^{-3} (LEP) [452]	_	$\sim 10^{-6}$
$BR(\Lambda_b \rightarrow \Lambda \nu \bar{\nu})$	-	_	$\sim 10^{-6}$
${\rm BR}(\tau \to \mu \gamma)$	4.4×10^{-8} (BaBar) [475]	$\sim 10^{-9}$ (Belle II) [442]	$\sim 10^{-9}$
$BR(\tau \rightarrow 3\mu)$	2.1×10^{-8} (Belle) [476]	$\sim { m few} imes 10^{-10}$ (Belle II) [442]	$\sim { m few} imes 10^{-10}$
$\frac{BR(\tau \rightarrow \mu \nu \bar{\nu})}{BR(\tau \rightarrow e \nu \bar{\nu})}$	$3.9 imes 10^{-3}$ (BaBar) [464]	$\sim 10^{-3}$ (Belle II) [442]	$\sim 10^{-4}$
$BR(Z \rightarrow \mu e)$	7.5×10^{-7} (ATLAS) [471]	$\sim 10^{-8}$ (ATLAS/CMS)	$\sim 10^{-9} - 10^{-11}$
${\rm BR}(Z\to\tau e)$	9.8×10^{-6} (LEP) [469]	$\sim 10^{-6}$ (ATLAS/CMS)	$\sim 10^{-8} - 10^{-11}$
${\rm BR}(Z\to\tau\mu)$	1.2×10^{-5} (LEP) [470]	$\sim 10^{-6}$ (ATLAS/CMS)	$\sim 10^{-8} - 10^{-10}$

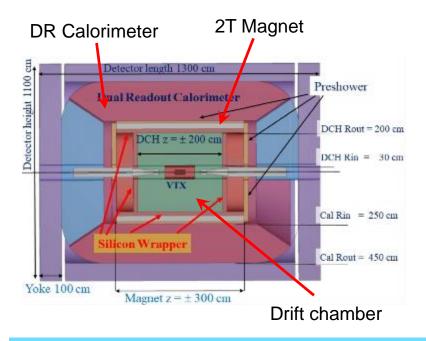
- A few key features @ CEPC: clean event environment, high energy to access B_c and b-baryons, efficient $e/\gamma/\pi^0$ reconstruction.
- **D** Extra requirements on detector design: powerful PID for π/K separation, good vertex, and efficient ECal.

Recent Physics Benchmark Analyses

New interesting physics topics & more simulation studies provide valuable inputs to the detector design.


Physics process	Measurands	Detector subsystem	Performance requirement
$\begin{array}{l} ZH, Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b\bar{b}/c\bar{c}/gg$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E=3\sim4\%$ at 100 GeV
$H \to \gamma \gamma$	${ m BR}(H o \gamma \gamma)$	ECAL	$2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$ $\sigma_{r\phi} =$ $5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$ $\sigma_E^{\text{jet}}/E =$ $3 \sim 4\% \text{ at 100 GeV}$ $\Delta E/E =$ $\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.010$
			0.7

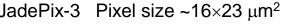
• Flavor physics \Rightarrow Excellent PID, for π/K separation up to ~20 GeV.

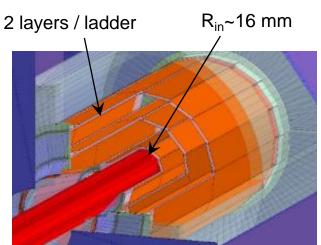

• EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

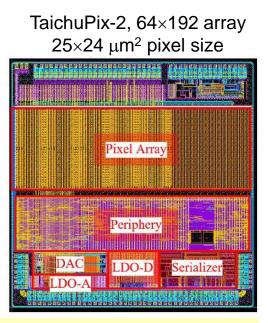
Conceptual Detector Designs

IDEA concept (also proposed for FCC-ee)

- Official international collaborations are to be formed, and to decide the detector design.
- The working group is doing R&D of all subsystems in the CDR design, and exploring various other technologies.
- The final two detectors likely are mixtures of different options.


Silicon Vertex Detector

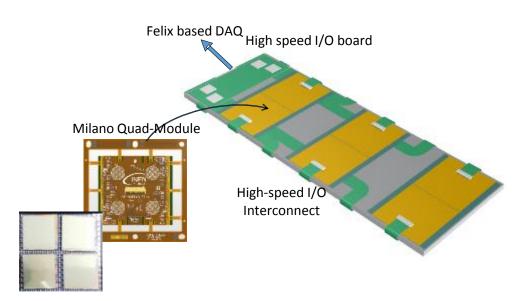


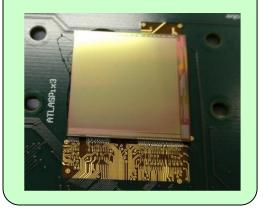

R&D supported by IHEP, MOST 1 & 2 funding, close domestic and international collaborations

- Goal: $\sigma(IP) \sim 5 \mu m$ for high P track.
- CDR design spec:
 - 6-layer silicon pixel CMOS detector, single point resolution ~ 3µm.
 - Low material (0.15% X₀ / layer), low power (< 50 mW/cm²), rad-hard (1 Mrad/year)
- Developing 2 lines of ASICs:
 - JadePix-3: (& MIC4) low power, rolling shutter readout.
 - TaichuPix-2: close to full functionality, rad-hard, under test. In rev-1 time resolution ~75-150 ns, power ~ 100-200 mW/cm².

AUTO CALL			T ALL		Ref Colored			the states		100	
	Constant of	AND INCOME.	Diff.	1	100	IL SPACE	Section 2	20.00	1.00	100	0 H 4
		ALC: NO.		19-4.		1280.15		定.武	10.50		n 🕈 🏠
1 100	d - texts							PRI S			6
	anime serve	transferrenze and	-	a series of	e navadro	a casharran	and the second	and services	-AAAAA	and seen	ar ar an 👔
THE OWNER WATER OF											
And the owner of the owner owne	Sec. 10	it in the									- -
the state of the s		10.00				in antes	and the	dina.	1.0	1.1	
and the second s	in the second							2. 2			- <u>8</u>
display of the local display is the local display i	and the second second									(1. A. A.	
11 11 14			1.000		1916				Section 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Contract of the	Statistics.					1000					
	States -	10 Mile-									10 AL

To build a full size prototype ladder

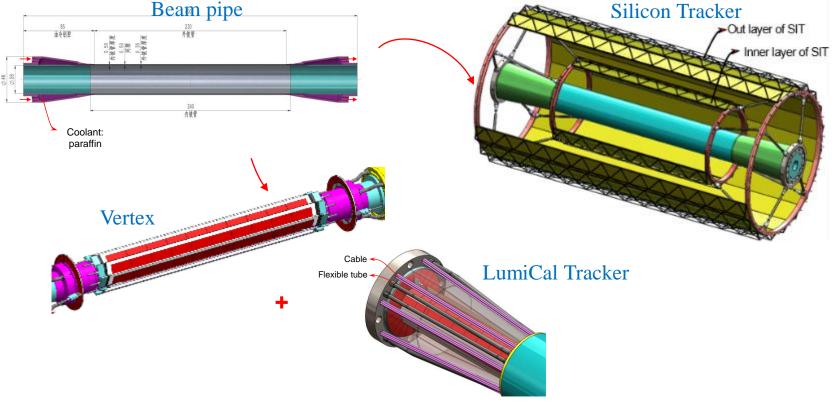

11/09/2020


Silicon Tracker

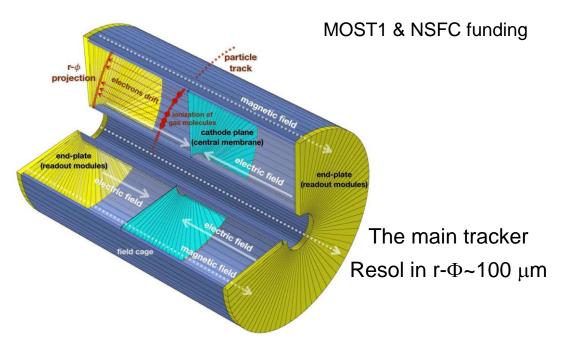
- The silicon tracker has very large area, ~70 m² in SiTrk + TPC, or ~140 m² in Full SiTrk plans. R&D focuses on cost effective and high performance.
- The tracking group is investigating a HV-CMOS solution based on the ATLASPix3 designed by KIT.
- Test boards are produced and wire-bonded at Liverpool & IHEP. They are distributed to European & Chinese collaborators.
- A short stave demonstrator will be built using the ATLASPix3. More prototyping are in planning.

ATLASPix3 132×372 pixels 150×50 μ m² pixel size. Time resolution: O(10ns)

NEXT:


A design optimized for CEPC, basing on ATLASPix3. Look into domestic production.

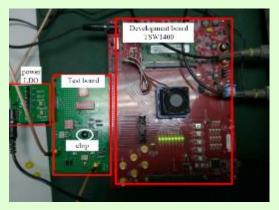
Interaction Region Design



- Completed: Synchrotron radiation & high order mode heat load calculation → beam pipe thermal analysis → detector radiation backgrounds evaluation
- ◆ On-going: Assess physics gains, design risks and difficulties to shrink the central Be beam pipe: ϕ 28mm → ϕ 20mm, wall thickness: 0.5+0.35 mm → 0.2+0.15 mm.
- On-going: Engineering design of sub-detectors including interfacing, integration installation scheme (focused but not limited to the interaction region).



Time Projection Chamber

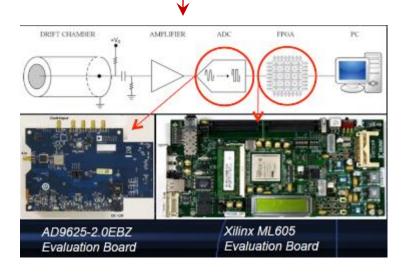


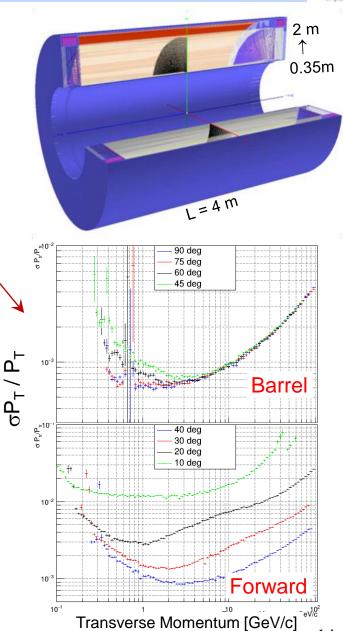
- Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by laser calibration at low lumin, difficult @ Z-pole.
- Potential solutions to suppress IBF, e.g. Pixel TPC with double meshes, or micromegas.
- When Gain×IBF=1, distortion <16 μm @ L 32
 ×10³⁴ cm⁻²s⁻¹, <49 μm @10³⁶ cm⁻²s⁻¹.

Completed

TPC Prototype + UV laser beams

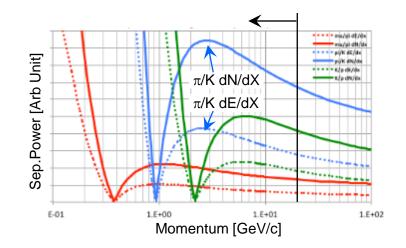
FEE ASIC (65nm CMOS)

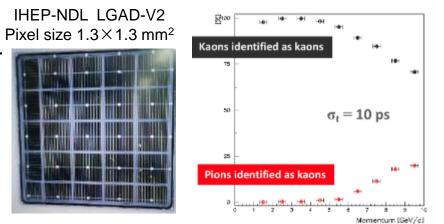



Drift Chamber

The main tracker in IDEA design

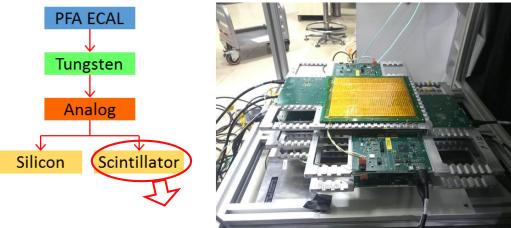
- Mechanical structure design with a wire tension recovery scheme at the end plates.
- Drift tube prototype with new types of wires.
- Simulation in Geant4 (in progress) & Garfield.
- Cluster counting electronics for PID. Test different data reduction solutions based on FPGA's with multi-channel approach.

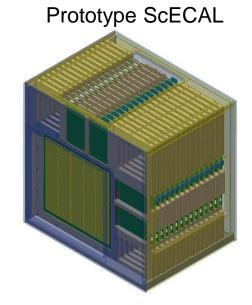


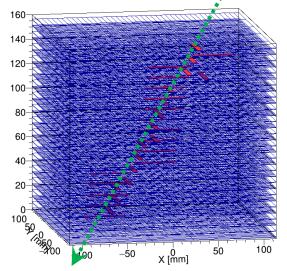


- Charge particle ID is crucial for the flavor physics. Aiming at P < ~ 20 GeV/c.
- Both TPC & DC provide good PID, with dE/dX or dN/dX cluster counting.
- For the FST solution, a supplement PID detector is needed. Combination of different PID detectors is also viable.
- Drift chamber between the outer layers of FST. It is promising in a simple simulation. More work in design optimization, and the physics impact.
- 2 Time of flight detectors, e.g. LGAD. The resolution ~20-30 ps today (ATLAS/CMS). Sensor by IHEP & NDL reaches 25ps. By the time of CEPC, 10 ps might be possible.
- ③ A RICH of aerogel & gaseous radiators. Space constraint needs to studied.
- More options and studies are needed.

PID workshop @ HKUST IAS, Jan 2021

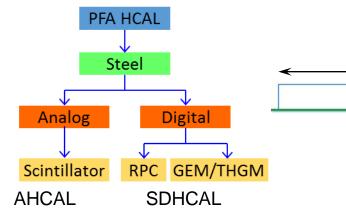



PFA ECAL


Super-layer bench test

- An alternative PFA ECAL in CDR: scintillator + SiPM as the sensitive detector, tungsten as absorber, totals 24X₀ radiation length.
- A 32-layer prototype has been constructed (Sept 2020): 3.2 mm thick W-Cu plate, scintillator bar size 5×45 mm², 1 SiPM/bar.
- It has been tested with cosmic rays, will be tested in electron beams at IHEP (Nov 2020), & DESY (early 2021).

A cosmic ray event


PFA HCAL

 $40 \times 40 \text{ mm}^2$

D=6.0mm

H=1.5mm

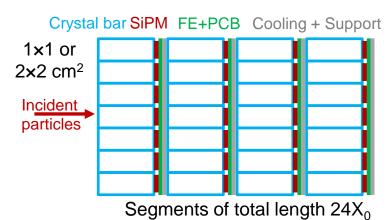
- ♦ AHCAL of Steel+Scint+SiPM:
 - Prototype size 72×72×100 cm³, 40 layers, 2cm steel plates, 4×4 cm² detector cell.
 - Readout electronics & DAQ are developed.
 - Preparing for production.
- SDHCAL based on GRPC:
 - Prototype size 1×1×1.4 m³, 48 layers, 1×1 cm² detector cell, 2 cm steel absorber.
 - Construct a 35×50 cm² GRPC before a full size.
- SDHCAL based on MPGD
 - Constructed a 25×25 cm² detector, and studied its performance.

(0. $12\lambda_I$, 1. $14X_0$)

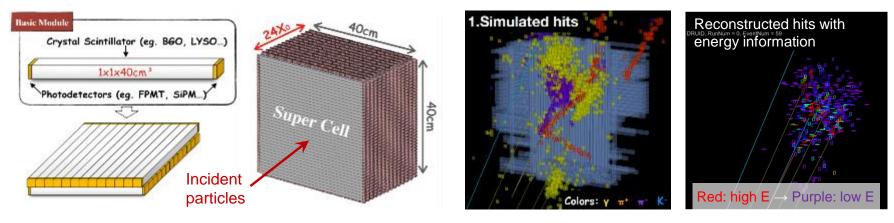
3 mm

Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm) **GRPC(6mm** \approx 0 λ_I, X_0) Stainless steel wall(2.5mm)

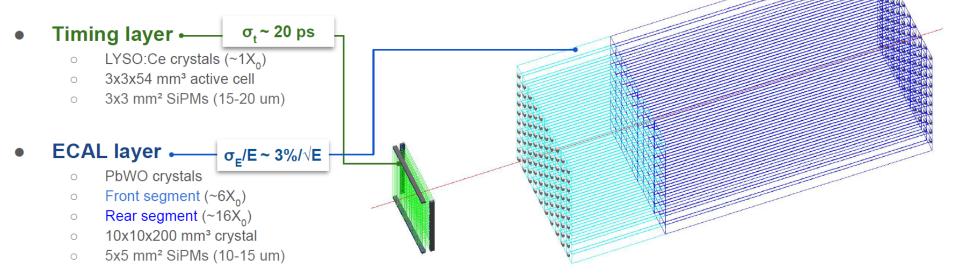


Crystal ECal



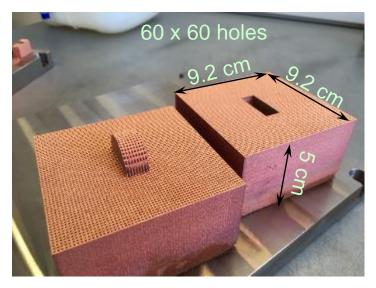
Design 1

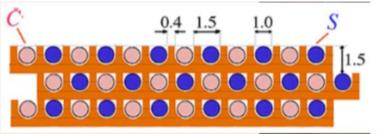
- Single end readout; potentials with PFA
- Study γ/π⁰ separation & energy resolution to optimize transverse and longitudinal segmentation.


- Crystal bar perpendicular to particles. Significant reduction of number of channels.
- Measure timing at both ends for position along bar. Reconstruction is a big challenge.
- Preparing software for a full simulation to estimate the impact on physics.

Also exploring a design of adding a time layer to the longitudinal solution.

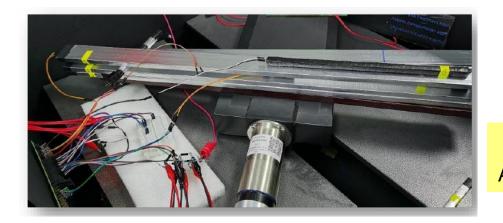
- SCEPCAL: a Segmented Crystal Electromagnetic Precision Calorimeter
- **Transverse and longitudinal segmentations** optimized for particle identification, shower separation and performance/cost
- Exploiting **SiPM readout** for contained cost and power budget

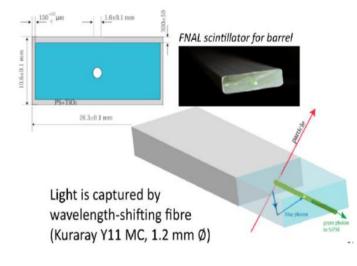



Dual Readout Calorimeter

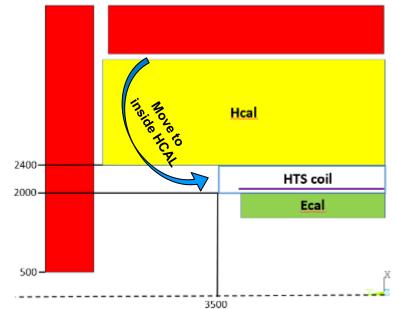
 The calorimeter in the IDEA design is a DR CAL, for both EM & hadronic showers.

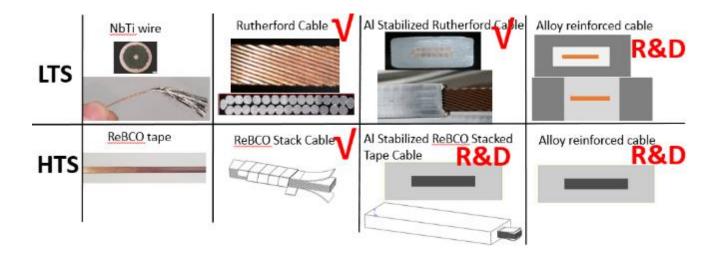
3-D printing of a Cu absorber by Korean colleagues


Cu absorber, 1 mm fibers


- Detector performance has been studied in simulation.
- Physics performance of benchmark channels, both standard approach & deep learning algorithm.
- Prototype modules are to be built, first an EM prototype by early 2021, then the hadronic size module.
- A 60×60–hole Cu absorber from 3-D printing looks promising.
- Dual readout in crystal ECAL is also being explored.

- ✤ RPC R&D applies to both SDHCAL & Muon.
- An alternative is μ-RWELL technology. The concept was proved. Currently focus mainly on industrialization and cost reduction.
- ✤ New activities on Scintillator Muon detector. R&D overlaps with Belle II KLM.
 - Prototype will be ready in 2021.
 - Scintillator strips: domestic product, improving quality & cost-reduction.
 - WLS fiber: purchased Kuraray, Investigating Chinese products. Focusing on optical couplings.
 - SiPM: Hamamatsu S13360-13**CS, also looking into domestic product and MPPC option.


Achieved σ_t ~2ns, Aim for 100-200 ps.



Solenoid Magnet

- Changes after the CDR design:
 - Significant reduction of the yoke material
 - Solenoid coil placed between Hcal & Ecal.
- Challenges: low mass, ultra-thin, high strength cable.
- Some of the on going R&D:
 - Domestic LTS and HTS cables,
 - Large coil winding process,
 - Low mass vacuum vessel structure

Accelerator R&D

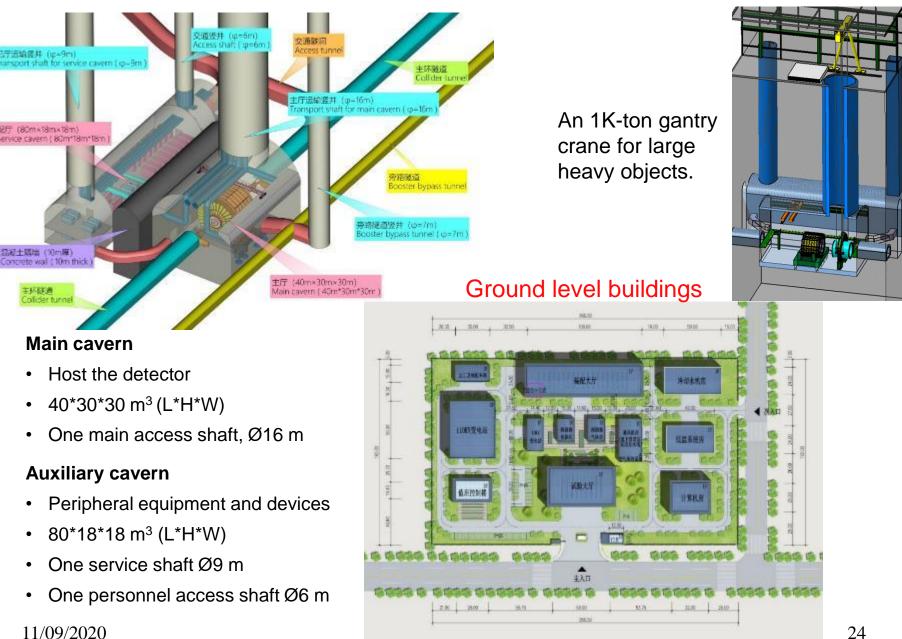
Progress and plan are reported in <u>a designated presentation by Prof Jie Gao</u>.

- ✤ Very active R&D program towards **TDR**, based on the CDR design.
- The design is further optimized, for possible higher luminosity/IP: (3→5)×10³⁴ cm⁻²s⁻¹ for Higgs runs, and (32 →101)×10³⁴ cm⁻²s⁻¹ for Z mode (2T).

CEPC Accelerator TDR R&D Priority, Plan and Test Facilities

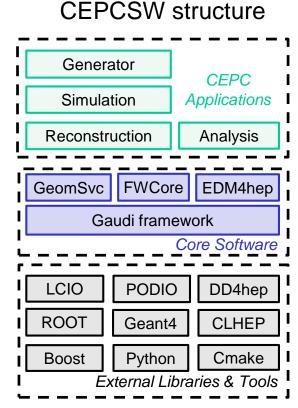
- CEPC 650MHz 800kW high efficiency klystron(80%), to complete fabrication by the end of 2021, to finish test in year 2022.
- 2 High precision booster dipole magnets: which are critical for booster operation, to complete a full-size magnet model in 2021.
- ③ CEPC 650MHz SC accelerator system, including SC cavities and cryomodules: to complete test cryomodule in 2022.
- Collider dual aperture dipole magnets, dual aperture quadrupoles and sextuple magnets: to complete full-size model in 2022
- (5) Vacuum chamber system: to complete fabrication and costing test in 2022
- 6 SC magnets including cryostats: to complete short test model in 2022

- ⑦ MDI mechanic system: remote vacuum connection to be tested in 2022
- (8) Collimator: to complete model test in 2022
- (9) Linac components: to complete key component tests in 2022
- (10) Civil engineering design: to complete reference implementation design in 2022
- (1) Plasma wake field injector: to complete the electron accelerator test in 2022.
- 12 18KW@4.5K cryoplant: industrial partner
- \triangleright


SppC technology R&D

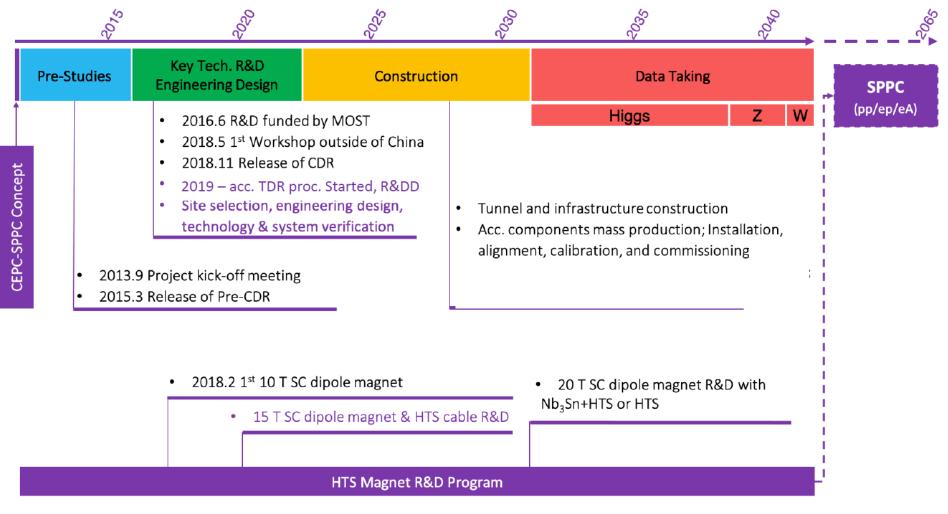
 Ion based superconducting materials and high field magnets.

The Experimental Hall



CEPC Software

- Core software, external libraries & tools are the base of the CEPCSW. More packages and components will be added when available.
- CEPC applications are created for CDR design. With new type of detectors introduced, corresponding codes are being developed.
- Recent added CEPC applications:
 - Software for SiTrk + DC design, detector description and track fitting.
 - Cluster counting method of DC
 - Simulation and simplified digitization of the crystal bar ECal.
- Work to be done
 - Further development of simulation & reconstruction for SiTrk+DC and Crystal bar ECal.
 - Non-uniform magnetic field & piling-up of beam backgrounds in simulation
 - Algorithms for building reconstructed particles
 - Continue to check the consistence of software, with benchmark performance studies.



- International workshops (with emphasis on CEPC):
 - In China: Beijing (2017.11, 2018.11, 2019.11), Shanghai (2020.10): ~400 participants, more international speakers (97 >91).
 - In Europe: Rome (2018.05), Oxford (2019.04), Marseille (2020.05 → 2021)
 - In USA: Chicago (2019.09), DC (2020.04)
- ✤ IAS HEP program (HKUST), annually since 2015.
 - 2020.01: Conference; Mini-workshops: MDI, Experiment & detector, Physics potential
 - 2021.01: Conference; Mini-workshops: Particle ID, ...
- Continue to have various topic specific workshops:
 - 2020.05: MDI workshop
 - 2020.07: Detector concept with a crystal ECAL
 - 2020.08: Detector & accelerator mechanics
- International Advisory Committee operates since 2015, and just had the 6th annual meeting (2020.10.28-29). Intern. Accelerator Review Committee, Intern. Detector R&D Review Committee started function in 2019.11.
- ✤ Active in international detector R&D: CALICE, LPTPC, RD* collaborations, …
- Snowmass: 35 LOIs (4 CEPC/SppC, 13 detector, 1 software, 17 physics)

CEPC Roadmap and Schedule (Ideal)

CEPC Project Timeline

