

Search for new physics in $b \rightarrow sll$ transitions at CMS

11/06/2020

Chuqiao Jiang

Motivation

- New physics can be discovered by two ways: (1) by producing new particles, or (2) by searching discrepancies between measured observables and SM predictions in rare decays.
- □ In SM, $b \rightarrow sll$ is a flavor-changing neutral current (FCNC) process which is forbidden at tree level.

- The amplitudes may interfere with non-SM particle contributions.
- The transition can probe NEW particles and processes.
- New physics can contribute to the loop diagrams and make pronounced modifications.

Analyses of $b \rightarrow sll$ in CMS experiments

- □ Many B meson rare decays have been investigated(ing) in CMS experiments, such as B⁰→K^{*0}µ⁺µ⁻, B⁺→K⁺µ⁺µ⁻, B⁺→K^{*+}µ⁺µ⁻...
- Run1 analyses based on 20fb⁻¹ 8TeV data have been completed, while Run2 analyses are ongoing.
- Publications (following measurements are all based on 2012 20 fb⁻¹ of 8 TeV CMS data):
- Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$: Phys.Rev. D98 (2018) no.11, 112011
- Angular analysis of $B^0 \rightarrow K^{*0}\mu^+\mu^-$: Phys.Lett. B781 (2018) 517-541
- Angular analysis of $B^+ \rightarrow K^{*+}\mu^+\mu^-$: CMS-PAS-BPH-15-009 (New!)

arXiv: 2010.13968

q² spectrum

- q² represents the invariant mass of the muon pair in the final state particles.
- The parameters of interest are always measured as functions of q².
- Because of the large number of background events from the narrow charmonium resonances, the J/ψ, ψ(2S) q² bins are not measured.

Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$

5

- Using 20.5 fb⁻¹ of 8 TeV pp data taken in 2012
- The decay for the process $B^+ \rightarrow K^+ \mu^+ \mu^-$ can be described by $\cos \theta_{\ell}$ and q^2

Differential decay rate formula:

$$\frac{1}{\Gamma} \frac{d\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{d\cos\theta_l} = \frac{3}{4} (1 - F_H) (1 - \cos^2\theta_l) + \frac{1}{2} F_H + A_{FB} \cos\theta_l$$

$$0 \le F_H \le 3, A_{FB} \le \min(1, F_H/2)$$

 θ_l : $l = \mu$, the angle between the μ^+ (μ^-) and the K⁻(K⁺) in the rest frame of the dimuon system. A_{FB} : $\mu^+ \mu^-$ forward-backward asymmetry.

 F_H : is a measure of the contribution from pseudoscalar, scalar and tensor amplitudes to the decay width Γ.

Result of Angular analysis of $B^+ \rightarrow K^+ \mu^+ \mu^-$

- The events are fit in seven q² bins from 1 to 22 GeV², yielding 2286 signal events in total.
- The measured A_{FB} and F_H show good agreement with the SM predictions within the uncertainties. No clear indication of new physics beyond the SM could be drawn from present results.

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- 7
- Using 20.5 fb⁻¹ of 8 TeV pp collision data taken in 2012
- □ Fully described by the three angles (θ_{ℓ} , θ_{κ} , ϕ) and the dimuon invariant mass squared q².
- Robust SM predictions of several angular parameters, A_{FB}
 , F_L, P₁ and P₅', are available.
- \square P₁ and P₅' are measured in q² bins from 1 to 19 GeV².
- Differential decay rate:

 $\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[\left(F_{\rm S} + A_{\rm S}\cos\theta_K \right) \left(1 - \cos^2\theta_l \right) + A_{\rm S}^5 \sqrt{1 - \cos^2\theta_K} \right] \right\} \\ \sqrt{1 - \cos^2\theta_l}\cos\theta_k \left(1 - C_{\rm S}^2\theta_k \right) \left(1 - C_{\rm S}^2\theta_k \right) \left(1 - C_{\rm S}^2\theta_k \right) \left(1 - C_{\rm S}^2\theta_l \right) \\ + \frac{1}{2} \left(1 - F_{\rm L} \right) \left(1 - \cos^2\theta_k \right) \left(1 + \cos^2\theta_l \right) + \frac{1}{2} F_{\rm L}^2 \left(1 - F_{\rm L} \right) \\ \left(1 - \cos^2\theta_k \right) \left(1 - \cos^2\theta_l \right) \cos 2\phi + 2 F_{\rm S}^2 \cos \theta_K \sqrt{F_{\rm L}} \left(1 - F_{\rm L} \right) \\ \sqrt{1 - \cos^2\theta_K} \sqrt{1 - \cos^2\theta_l}\cos\phi \right] \right\}$

Ref: Phys.Lett. B781 (2018) 517-541

Result of Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

The events are fit in seven q^2 bins from 1 to 19 GeV², yielding 1397 signal events in total.

The measured P_1 and P'_5 are consistent with the SM predictions and previous measurements within the uncertainties.

Ref: Phys.Lett. B781 (2018) 517-541 LHCb Run2 results: Phys.Rev.Lett. 125 (2020) 1, 011802 (New)

8

Angular analysis of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

Using 20 fb⁻¹ of 8 TeV pp collision data

 $\theta_{\rm K}$

- The decay can be fully described by the three angles ($\theta_{\ell}, \theta_{K}, \phi$) and q^2
- $\Box \text{ Differential decay rate (integrate out } \phi):$ $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^3\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_I\mathrm{d}\cos\theta_K} = \frac{9}{16} \left[\frac{1}{2} \left(1 F_{\mathrm{L}} \right) \left(1 \cos^2\theta_{\mathrm{K}} \right) \left(1 + \cos^2\theta_I \right) \right]$ $+ 2F_{\mathrm{L}} \cos^2\theta_{\mathrm{K}} \left(1 \cos^2\theta_I \right) + \frac{4}{3} A_{FB} (1 \cos^2\theta_{\mathrm{K}}) \cos\theta_I$
- Two observables, the forward-backward asymmetry of the muon (A_{FB}) and the longitudinal polarization fraction of the K^{*+} (F_L), are measured as a function of q²

Ref: CMS-PAS-BPH-15-009

11/06/2020

P

q² binning

Bin index	m _{μμ} ² [GeV²]
1	1 - 8.68
2	8.68 - 10.09 (J/ψ)
3	10.09 - 12.86
4	12.86 - 14.18 (ψ')
5	14.18 - 19
0	Bin1 + Bin3 + Bin5

Events selection

HLT:

- μ : [$p_T > 3.5 \text{GeV}$, $|\eta| < 2.2$],
- µµ: [vertex CL > 0.1, p_{T} > 6.9GeV, 1<M<4.8GeV, cos(<p_T , vertex to beamspot vector>) > 0.9]

Final state particles:

- good common vertices,
- invariant masses consistent with mother particles,
- Significant displaced from beamline
- P_{τ} vector is roughly parallel to the vector from beamspot to B vertex
- □ Kinematic cuts (optimized to maximize signal significance):
- $p_T(K_s^{0}) > 1 \, \text{GeV},$
- p_T(K^{*+})>0.4GeV,
- $L_{xy}(K^{*+} \text{ to beamline})/\sigma>0.4$

Fitting strategy

- The measurement of A_{FB} and F_L is performed in three q^2 regions: $1 < q^2 < 8.68 \text{ GeV}^2$, $10.09 < q^2 < 12.86 \text{ GeV}^2$, and $14.18 < q^2 < 19 \text{ GeV}^2$.
- □ For each q^2 bin, the observables A_{FB} and F_L are extracted by performing an unbinned extended maximum-likelihood fit on three variables: m, $\cos\theta_{\kappa}$, and $\cos\theta_{\ell}$.
- The unnormalized PDF used to fit the data is: $pdf(m, \cos \theta_K, \cos \theta_\ell) = Y_S S^m(m) S^a(\cos \theta_K, \cos \theta_\ell) \epsilon(\cos \theta_K, \cos \theta_\ell)$

$+ Y_B B^m$	$(m) B^{\theta_{\mathbf{K}}}$	$(\cos\theta_{\rm K})$	$B^{\theta_{\ell}}(\cos\theta_{\ell}).$

	What p.d.f?	Determined from?	Fixed in final extended ML fit?	
S™	Double Gaussian	Official MC	Fixed from unbinned ML fit	
S^	From theory	-	Float	
З	(Next page)	Official/Private MC	Fixed from binned χ^2 fit	
Вм	Exponential	Data	Float	
Вкл	Analytic models	Data sidebands	Fixed from unbinned ML fit	

Efficiency description

- 13
- The signal efficiency function is obtained from the simulated samples in a two step:
- Fit to MC by a product of two one-dimensional functions, one for each angular variable
- The results from the first step are fixed and an additional cross-term function is added to account for correlations and refit to MC

$$\varepsilon(\cos\theta_K,\cos\theta_I) = \varepsilon_{1D}(\cos\theta_K) \cdot \varepsilon_{1D}(\cos\theta_I) \cdot [1 + \mathcal{C}(\cos\theta_K,\cos\theta_I)]$$

get in step 1 get in step 2

Efficiency projections

14

Bin index	cosθĸ	cosθι	X-term
1	pol6	3 gaus	3rd Legendre(K)*pol4(I)
3, 5, 0	pol6	pol6	3rd Legendre(K)*pol4(I)

Fitting results projections (bin0)

The results of the unbinned maximum likelihood fit are overlaid on the data in projections on the B⁺ invariant mass, $\cos\theta_{\kappa}$, and $\cos\theta_{\ell}$ for each q^2 region.

15

Systematic uncertainties

Source	$A_{\rm FB}~(10^{-3})$	$F_{\rm L} (10^{-3})$
MC statistical uncertainty	12 – 29	18 – 38
Efficiency model	3 – 25	4 - 12
Background shape	34 - 170	46 – 121
S-wave contamination	4 - 22	5 – 12
Total systematic uncertainty	42 - 174	55 – 127

Dominant systematic uncertainty is from background description:

- (1) Background functional form
- (2) Effect of alternate sideband definition
- (3) Sideband statistics uncertainty

Result of Angular analysis of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

17

Ref:

q^2 (GeV ²)	Signal yield	$A_{ m FB}$	$F_{ m L}$
1.00 - 8.68	22.1 ± 8.1	$-0.14^{+0.32}_{-0.35}\pm 0.17$	$0.60^{+0.31}_{-0.25} \pm 0.13$
10.09 – 12.86	25.9 ± 6.3	$0.09^{+0.16}_{-0.11}\pm 0.04$	$0.88^{+0.10}_{-0.13}\pm0.05$
14.18 - 19.00	45.1 ± 8.0	$0.33^{+0.11}_{-0.07}\pm0.05$	$0.55^{+0.13}_{-0.10}\pm0.06$
1.00 - 19.00	90.0 ± 13.5	$0.17^{+0.10}_{-0.06}\pm0.08$	$0.71^{+0.11}_{-0.09}\pm0.06$
CMS-PAS-BPH-15-009		1	1/06/2020

Summary

- The angular analyses of FCNC B rare decays are important ways to search BSM phenomena.
- * The three measurements, $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, and $B^+ \rightarrow K^{*+} \mu^+ \mu^-$, all obtained results consistent with standard model within the uncertainties.
- ♦ Currently more analyses are proceeding in CMS, with new data(Run2 data) and new decays(e.g. $B_s \rightarrow \phi \mu^+ \mu^-$

19

20

Definition of observables $P_i^{(')}$

21

$$\frac{\mathrm{d}^4\Gamma[\overline{B}{}^0 \to \overline{K}^{*0}\mu^+\mu^-]}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_i I_i(q^2) f_i(\vec{\Omega}) \text{ and}$$
$$\frac{\mathrm{d}^4\bar{\Gamma}[B^0 \to K^{*0}\mu^+\mu^-]}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_i \bar{I}_i(q^2) f_i(\vec{\Omega}) ,$$

$$S_{i} = \left(I_{i} + \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right) \text{ and } A_{i} = \left(I_{i} - \bar{I}_{i}\right) \left/ \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} + \frac{\mathrm{d}\bar{\Gamma}}{\mathrm{d}q^{2}}\right).$$

$$P_{1} = \frac{2 S_{3}}{(1 - F_{L})} = A_{T}^{(2)} ,$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{(1 - F_{L})} ,$$

$$P_{3} = \frac{-S_{9}}{(1 - F_{L})} ,$$

$$P_{4,5,8}^{\prime} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}} ,$$

$$P_{6}^{\prime} = \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}} .$$

O C

 $S_i: CP$ averages; $A_i: CP$ asymmetries; $P_i^{(\prime)}:$ constructed observables for $B^0 \rightarrow K^{*0}$ leading form-factor uncertainty cancel

Fitting results projections of all bins

