

Measurements of differential cross-sections in four-lepton events in 13 TeV protonproton collisions with ATLAS detector

Xiaotian Liu¹

1 University of Science and Technology of China

CLHCP2020 2020.Nov.06

Motivation

- four-lepton final state (two same-flavor opposite-sign e or μ pairs)
 - contains rich physics theoretically
 - relatively clean experimentally
- precise measurements and tests on SM
- potential BSM interpretation

ATLAS detector

- one of the two general purpose detectors on Large Hadron Collider
- sub-detectors: inner trackers, electromagnetic and hadronic calorimeters and muon spectrometer

• ATLAS Run-2 (2015-2018) data corresponding to 139fb⁻¹ of √s = 13 TeV pp collisions

Introduction

Fiducial Region

- designed to be as **inclusive** as possible
- based on particle-level prompt leptons, with dressed electrons and bare muons
- any process with at least 4 leptons in the hard scattering is considered as part of the signal

- Quadruplet: invariant mass of same-flavor opposite-sign lepton pair which is closest (second closet) to Z mass treated as primary (secondary) pair
 - one quadruplet defined in an event
 - three flavor categories: 4µ, 2e2µ, 4e

Event Selection

- at first leptons are reconstructed and checked with baseline criteria
- event selection which mimics the fiducial definition
- tight criteria applied on leptons in quadruplet to mitigate misidentified or non-prompt leptons

Introduction

Observables

- integrated cross-sections
- differential cross-sections:
 - m₄₁
 - m₄₁ in slices of p^T₄₁
 - \mathbf{m}_{41} in slices of $|\mathbf{y}_{41}|$

```
Higgs (120 < m<sub>4l</sub> < 130 GeV)
On-shell ZZ (180 < m<sub>4l</sub> < 2000 GeV)
```

' Single Z (60 < m₄₁ < 100 GeV)

```
Off-shell ZZ (20 < m<sub>41</sub> < 60 GeV OR
100 < m<sub>41</sub> < 120 GeV OR
130 < m<sub>41</sub> < 180 GeV)
```

• **m**_{4l} in slices of flavor categories: **4μ, 2e2μ, 4e**

- m₁₂, m₃₄
- **p**^T₁₂, **p**^T₃₄
- rapidity difference between two lepton pairs $|\Delta y_{pairs}|$
- azimuthal angle between the pairs $|\Delta \phi_{pairs}|$
- azimuthal angle between leading/subleading leptons $|\Delta \phi_{\parallel}|$
- polarization variables cosθ*₁₂, cosθ*₃₄ (θ* angle between the negative lepton in the lepton pair rest frame, and the lepton pair in the lab frame)

MC simulation

• MC samples are generated dedicatedly for each essential process

qqZZ		NLO QCD@0,1 jet NNPDF3.0NNLO
ggZZ		LO QCD@0,1 jet NNPDF3.0NNLO
Higgs	ggF	NNLO QCD PDF4LHCNNLO
	VBF	NLO QCD PDF4LHC15
	VH, ttH	NLO QCD PDF4LHC15
triboson		NLO@inclusive NNPDF3.0NNLO
ttV		LO NNPDF3.0NNLO

Background & Detector effect

Background estimation

- background refers to events with one or more non-prompt/fake leptons entering quadruplet, mainly from Z+jets and ttbar processes
- data-driven approach: Fake Factor method to estimate background
- background contributes < 10% in most bins

Detector corrections

- aim to measure particle-level distributions corrected for detector effects (resolution, inefficiency)
 - pre-unfolding efficiency correction per leptons in quadruplet
 - iterative Bayesian unfolding process
- binning of distributions optimization based on unfolding method

Uncertainties

- data statistical uncertainty dominates most of bins in almost all distributions
- other sources of uncertainties are the background estimation, lepton reconstruction, identification, isolation and track-to-vertex association, lepton resolution and scale, generator selection, unfolding, etc.

Detector-level yields

• predicted yields V.S. data counts on detector level

			Region		
	Full	$Z\to 4\ell$	$H\to 4\ell$	Off-shell ZZ	On-shell ZZ
$q\bar{q} \to 4\ell$	6100 ± 500	1490 ± 120	128 ± 10	800 ± 60	3640 ± 280
$gg \to 4\ell$	680 ± 90	10.8 ± 2.9	3.9 ± 0.7	49 ± 6	620 ± 80
$H\to 4\ell$	245 ± 20	2.16 ± 0.18	207 ± 17	33.5 ± 3.1	1.98 ± 0.2
VVV	35 ± 14	0.018 ± 0.008	0.13 ± 0.05	2.1 ± 0.8	33 ± 13
$t\bar{t}V(V)$	123 ± 19	1.37 ± 0.22	1.2 ± 0.2	15.5 ± 2.4	105 ± 16
Background	330 ± 50	44 ± 8	26 ± 5	129 ± 20	139 ± 31
Total Pred.	7500 ± 500	1540 ± 110	367 ± 19	1030 ± 60	4530 ± 290
Data	7755	1452	379	1095	4828

Measurement results

• differential cross-section as a function of m_{41} :

- the agreement between the data and both predictions is generally within the quoted uncertainties
 integrated and other
- two predictions show almost the same distribution

integrated and other differential cross-sections

Interpretation: $Z \rightarrow 4l$ Branching ratio

• extracted the BR with measured cross-section in the $Z \rightarrow 4l$ region

= $(4.41 \pm 0.13(\text{stat.}) \pm 0.23(\text{syst.}) \pm 0.09(\text{theory}) \pm 0.12(\text{lumi.})) \times 10^{-6}$ = $(4.41 \pm 0.30) \times 10^{-6}$

2020/Nov/06

 $Z^{(*)}/\gamma^*$

Interpretation: B-L model

- BSM with spontaneously U(1)_{B-L} gauge symmetry breaking, interesting model giving birth to neutrino mass: <u>B-L model</u>
- new particles introduced: Z', exotic Higgs h₂ and RH neutrinos
 - Z' interacts with SM through coupling g' and h_2 mixes with SM Higgs with mixing angle α
- scenario considered: fixed parameters: low Z' mass (35 GeV) weakly coupled to SM (g' = 10⁻³)
- differential cross-sections as a function of rich variables providing best expected sensitivity to set limit on 2D $m_{h2} \sim \sin \alpha$ parameter space
- statistics: multi-gaussian likelihood function to include the covariance among bins from unfolding
- BSM samples generated using Herwig7 at particle-level with LO precision

B-L model interpretation

- 95% CL exclusion:
- Left: m4l only exclusion; Right: all variables included exclusion

• numerous variables we measured, provide us stronger power of exclusion

Summary

- we present the measurement of various differential cross-sections in 4leptons events with ATLAS full Run-II data at a new-precision regime
- all information are corrected to particle-level and preparing in HEPData with Rivet routine, providing convenient way for rapid future re-interpretation to both experimentalists and theorists
- improve the $Z \rightarrow 4l$ BR measurement
- constraints setting on example gauged B-L model, improving the parameter exclusion limit
- reference public <u>CONF note</u>

Thank you for your attention!

Back-up

Back-up: fiducial region definition

 any process with at least 4 leptons in the hard scattering is considered as part of the signal

Lepton selection			
Muon selection	Bare, $p_{\rm T} > 5$ GeV, $ \eta < 2.7$		
Electron selection	Dressed, $p_{\rm T} > 7$ GeV, $ \eta < 2.47$		
	Event selection		
Four-lepton signature	At least 4 leptons, with 2 Same-Flavour, Opposite-Sign pairs		
Lepton kinematics	$p_{\rm T} > 20/10$ GeV for leading two leptons		
Lepton separation	$\Delta R_{ij} > 0.05$ for any leptons		
J/ψ -Veto	$m_{ij} > 5$ GeV for all SFOS pairs		
Truth isolation	$ptcone30/p_{T} < 0.16$		

Back-up: MC simulation

•	aa77.	Process		Generator	DSID
•	qqzz.	$a\bar{a} \rightarrow 77^{(*)} \rightarrow A\ell$	inclusive	Sherpa 2.2.2	364250
	 PS: MEPS@NIO Catani- 	$qq \rightarrow ZZ^{(\prime)} \rightarrow 4i$	2 add. jets (EW)	Sherpa 2.2.2	364364
		$gg (\rightarrow H^{(*)}) \rightarrow ZZ^{(*)} \rightarrow$	4 ℓ inclusive, $m_{4\ell} > 130 \text{ GeV}$	Sherpa 2.2.2	345706
	Seymour dipole factorization	$gg \to ZZ^{(*)} \to 4\ell$	no H, $m_{4\ell}$ < 130 GeV	Sherpa 2.2.2	345708
	 OPENLOOPS lib for virtual 		ggF	Powheg (NNLOPS) + Pyth	hia 8 345060
	OCD correction		VBF	Powneg + Pythia 8	346228
		$pp \to H \to ZZ^{(*)} \to 4\ell$	ZH	Powneg + Pythia 8	345038
			WH	Powheg + Pythia 8	345039 345040
•	ggZZ:		ttH	Powneg + Pythia 8	346342 346341
	 > 130 GeV (SM box + ggF + 	$m \rightarrow W^{(*)}W^{(*)}\mathcal{Z}^{(*)} \rightarrow \mathcal{A}^{\rho}$	ov inclusive	Sueppi 2.2.2	346340
		$pp \rightarrow W \bigcirc W \bigcirc Z \oslash \rightarrow 4\iota$ $pp \rightarrow W^{(*)}Z^{(*)}Z^{(*)} \rightarrow 5\ell$	1 v inclusive	SHERPA 2.2.2	364245
	interference)	$pp \rightarrow Z^{(*)}Z^{(*)}Z^{(*)} \rightarrow 6\ell$	inclusive	Sherpa 2.2.2	364247
		$pp \to Z^{(*)}Z^{(*)}Z^{(*)} \to 4\ell 2$	2v inclusive	Sherpa 2.2.2	364248
	K-factor to NLO	$pp \rightarrow t\bar{t} + \ell\ell$	$t\bar{t}Z, m_{\ell\ell} > 5 \text{ GeV}$	Sherpa 2.2.0	410142
		Process		Generator	DSID
•	on-shell Higgs:	$pp \rightarrow Z^{(*)} \rightarrow 2e + \text{ jets}$	\geq 4 truth leptons with $p_{\rm T}$ > 4GeV $m_1(\ell\ell)$ > 40GeV, $m_2(\ell\ell)$ > 8GeV	SHERPA 2.2.0	344295
	• ggF cross-section @ N3I O	$pp \rightarrow Z^{(*)} \rightarrow 2\mu$ + jets	\geq 4 truth leptons with $p_{\rm T}$ > 4GeV $m_1(\ell\ell)$ > 40GeV, $m_2(\ell\ell)$ > 8GeV	, Sherpa 2.2.0	344296
	 • P\$. PVTHIΔ\$ 	$pp \rightarrow Z^{(*)} \rightarrow 2e + \text{jets}$	\geq 3 truth leptons with $p_{\rm T}$ > 4GeV veto filter of 344295	Sherpa 2.2.0	344297
	15.1111146	$pp \rightarrow Z^{(*)} \rightarrow 2\mu$ + jets	\geq 3 truth leptons with $p_{\rm T}$ > 4GeV veto filter of 344296	Sherpa 2.2.0	344298
		$pp \rightarrow Z^{(*)} \rightarrow 2e + \text{ jets}$	inclusive	Sherpa 2.2.1 3	64114-364127
•	tribacan	$pp \rightarrow Z^{(*)} \rightarrow 2\mu$ + jets	inclusive	Sherpa 2.2.1 3	64100-364113
•	tridoson	$pp \rightarrow Z^{(*)} \rightarrow 2\tau + \text{jets}$	inclusive	SHERPA 2.2.1 3	64128-364141
•	±±\/	$pp \rightarrow tt \rightarrow 2l$	inclusive	POWHEG + PYTHIA 8	410472
•	ττν	$pp \to i \forall i l$ $pp \to Z + \Upsilon \to 4\ell$	inclusive	SHERPA 2.2.2 Pythia 8 8	304253 300041-800044
	 PS:same as qqZZ 				

Back-up: triggers

 data selected using a logical OR of a reduced set of lowest prescaled single, di- and trilepton triggers

Year			
2015	HLT_e24_lhmedium_L1EM20VH		
	HLT_e60_lhmedium		
	HLT_e120_lhloose		
	HLT_2e12_lhvloose_L12EM10VH		
2016	HLT_e26_lhtight_nod0_ivarloose		
	HLT_e60_lhmedium_nod0		
	HLT_e140_lhloose_nod0		
	HLT_2e17_lhvloose_nod0		
2017	HLT_e26_lhtight_nod0_ivarloose		
	HLT_e60_lhmedium_nod0		
	HLT_e140_lhloose_nod0		
	HLT_2e24_lhvloose_nod0		
	HLT_e24_lhvloose_nod0_2e12_lhvloose_nod0_L1EM20VH_3EM10VH		
2018	HLT_e26_lhtight_nod0_ivarloose		
	HLT_e60_lhmedium_nod0		
	HLT_e140_lhloose_nod0		
	HLT_2e17_lhvloose_nod0_L12EM15VHI		
	HLT_2e24_lhvloose_nod0		
	HLT_e24_lhvloose_nod0_2e12_lhvloose_nod0_L1EM20VH_3EM10VH		

Year	
2015	HLT_mu20_iloose_L1MU15
	HLT_mu50
	HLT_2mu10
	HLT_mu18_mu8noL1
2016	HLT_mu26_ivarmedium
	HLT_mu50
	HLT_2mu14
	HLT_mu22_mu8noL1
2017	HLT_mu26_ivarmedium
	HLT_mu50
	HLT_2mu14
	HLT_mu22_mu8noL1
2018	HLT_mu26_ivarmedium
	HLT_mu50
	HLT_2mu14
	HLT_mu22_mu8noL1
Year	
2015	HLT_e7_lhmedium_mu24
	HLT_e17_lhloose_mu14
2016	HLT_e7_lhmedium_nod0_mu2
	HLT e17 lbloose nod0 mu14

Ieal	
2015	HLT_e7_lhmedium_mu24
	HLT_e17_lhloose_mu14
2016	HLT_e7_lhmedium_nod0_mu24
	HLT_e17_lhloose_nod0_mu14
	HLT_2e12_lhloose_nod0_mu10
2017	HLT_e17_lhloose_nod0_mu14
	HLT_e26_lhmedium_nod0_mu8noL1
2018	HLT_e17_lhloose_nod0_mu14
	HLT_e26_lhmedium_nod0_mu8noL1

Back-up: event selection

1. baseline lepton selection

3. signal lepton selection

Category	Requirement	
Kinematics	Muons :	$p_{\rm T} > 5 { m GeV}$
		If CaloTag: >15 GeV
		$ \eta < 2.7$
	Electrons:	$p_{\rm T} > 7 { m ~GeV}$
		$ \eta < 2.47$
Vertex association	Both :	$ z_0 \sin\theta < 0.5 \text{ mm}$
Identification:	Muons:	Loose ID
	Electrons:	LooseLH ID
Overlap removal: Lepton-favoured		

Input objects	Baseline electrons and muons that are part of the quadruplet
Isolation	FixedCutPflowLoose working point
	Contribution from all other baseline leptons is subtracted
Cosmic muon veto	Muons: $ d_0 < 1 \text{ mm}$
Impact Parameter	Muons: d_0/σ_{d_0} <3
	Electrons: $d_0/\sigma_{d_0} < 5$
Stricter Electron ID	Electrons: LooseBLayerLH ID

2. detector-level event selection

Category	Requirement
Event Preselection	Fire at least one lepton trigger
	≥ 1 vertex with 2 or more tracks
Four-lepton signature	At least 4 leptons (e, μ)
Lepton kinematics	$p_{\rm T} > 20/10$ GeV for leading two leptons
Lepton separation	$\Delta R_{ij} > 0.05$ for any two leptons
J/ψ -Veto	$m_{ij} > 5$ GeV for all SFOS pairs
Trigger matching	Baseline leptons matched to at least one lepton trigger
Quadruplet formation	At least one quadruplet with 2 Same-Flavour, Opposite-Sign (SFOS) pairs
Quadruplet categorisation	4 signal, 0 non-signal: signal region
	\leq 3 signal, \geq 1 non-signal: background control region

2020/Nov/06

Back-up: event selection

jet selection		
Collection:	AntiKt4EMPFlow	
Kinematics:	$ \eta < 4.5$	
	$p_{\rm T} > 30 { m GeV}$	
Signal jet (after overlap removal):	pass JVT	

details of overlap removal

Reject	Against	Overlap Criteria
electron	electron	shared track, $p_T^1 < p_T^2$
calo muon	electron	shared ID track
electron	muon	shared ID track
jet	electron	$\Delta R < 0.2$
jet	muon	NumTrack < 3 and ghost-associated/ $\Delta R < 0.2$

Back-up: fake factor method

- fake factor: calculate what fraction of fake leptons is expected given the number of baseline-not-signal leptons
- calculated in Z->II CR (events one SFOS pairs within 15 GeV of mZ and at least one other baseline lepton)
- fake factor applied to the number of baseline-not-signal leptons in each event

2020/Nov/06

Back-up: background validation

 validation regions: similar with SR but with one different-flavor, opposite-sign pair OR same-flavor, same-sign pair

validate the FF method as well as cross-checking with Matrix method

Back-up: background smoothing

- to suppress the statistical fluctuations
- reduce the impact of single outlier with larger FF weights
 - background estimation in fine binning for each histogram
 - smooth fine-binned distribution with Friedman's super smoother
 - integrate smoothed distribution over coarser, target bins
 - normalized to the background yield obtained before smoothing in the first step

Back-up: detector corrections

- pre-unfolding efficiency correction per leptons in quadruplet
 - per-event weight: $\prod_{i=1}^{4} \frac{1}{\varepsilon_i(p_{Ti},\eta_i)}$
- iterative Bayesian unfolding process

•
$$P_n(T_j|R_i) = \frac{P(R_j|T_i)P_{n-1}(T_i)}{\sum P(R_j|T_k)P_{n-1}(T_k)}, P_n(T_i) = \sum P_n(T_j|R_j)P(R_j)$$

- T_i , R_i is the bin content at the *i*th bin
- iterative Bayesian unfolding with either 2/3 iterations, optimized based on the bias and statistical uncertainty
- validation: data-driven closure test
- injection test demonstrate the robustness to BSM

Back-up: unfolding optimization

- statistical variation based toy study
 - toys generated randomly from the MC reco prediction
 - unfold toys with several possible iteration choices
 - estimate the bias and statistical error for each unfolded toy
- metric: **bias significance** defined as the ratio of bias and stat, indicating the size of bias comparing with stat
- we require 0.5 threshold so here the 3 Bayesian iterations is proper
- for other variables, most of them prefer 3 iterations while for mZ_1 , $\Delta \varphi_{II}$, and $\Delta y_{pairs} 2$ iterations is sufficient

Back-up: unfolding data-driven test

- MC closure:
 - direct MC reco unfolding: full closure
 - half MC reco unfolding: closure within statistical uncertainty
- data-driven closure
 - smooth data/MC ratio
 - reweight MC
 - unfold reweighted MC , compare with reweighted truth

take the difference as unfolding systematic uncertainty

2020/Nov/06

Xiaotian Liu · CLHCP2020

Back-up: unfolding injection test

• further check on the model-independence of unfolding

- nominal unfolding is robust to broad excess over the SM prediction
- pre-unfolding correction improves the comparison of unfolded vs particle yields in most cases

• inclusive fiducial cross-sections (in full phase-space and defined regions):

			Region		
	Full	$Z\to 4\ell$	$H \to 4\ell$	Off-shell ZZ	On-shell ZZ
Measured	88.9	22.1	4.76	12.4	49.3
fiducial	± 1.1 (stat.)	$\pm 0.7 \text{ (stat.)}$	± 0.29 (stat.)	± 0.5 (stat.)	± 0.8 (stat.)
cross-section	$\pm 2.3 \text{ (syst.)}$	$\pm 1.1 \; (\text{syst.})$	± 0.18 (syst.)	± 0.6 (syst.)	± 0.8 (syst.)
[fb]	± 1.5 (lumi.)	± 0.4 (lumi.)	± 0.08 (lumi.)	± 0.2 (lumi.)	± 0.8 (lumi.)
	$\pm 3.0 \text{ (total)}$	$\pm 1.3 \text{ (total)}$	$\pm 0.35 \text{ (total)}$	$\pm 0.8 \text{ (total)}$	$\pm 1.3 \text{ (total)}$
Sherpa	86 ± 5	$23.6{\pm}1.5$	$4.57 {\pm} 0.21$	$11.5{\pm}0.7$	46.0 ± 2.9
POWHEG + PYTHIA8	83 ± 5	$21.2{\pm}1.3$	$4.38 {\pm} 0.20$	$10.7{\pm}0.7$	46.4 ± 3.0

- measured cross-sections are compared to Sherpa and Powheg providing different modelling of qqZZ
- in all regions data and MC are consistent within the uncertainties

• m12 differential cross-sections in all regions

• m34 differential cross-sections in all regions

• $|\Delta \phi_{\text{pairs}}|, |\Delta y_{\text{pairs}}|, p_{12}^{T}, p_{34}^{T}$ differential cross-sections in on-shell region:

Data

3 3.5

Sherpa qq→ 4I + X

4.5

 $|\Delta Y_{\text{pairs}}|$

4

Sherpa qq→ 4I + X

10²

р_{т,34} [GeV]

Powheg qq→ 4I + X

 $X = gg \rightarrow 4I+H \rightarrow 4I+VVV+ttV(V)$

Data

10

Powheg qq → 4I + X

 $X = aa \rightarrow 4I+H \rightarrow 4I+VVV+t\bar{t}V(V)$

• $|\Delta \phi_{\parallel}|$ differential cross-sections in all regions

• cosθ*₁₂ differential cross-sections in all regions

• cosθ*₃₄ differential cross-sections in all regions

2020/Nov/06

Back-up: B-L model interpretation

• multi-gaussian likelihood:

$$\mathcal{L}(\mu) = \frac{1}{\sqrt{(2\pi)^{k}|C|}} \exp(-\frac{1}{2}(\vec{\sigma}_{data} - \vec{\sigma}_{pred}(\mu))^{T}C^{-1}(\vec{\sigma}_{data} - \vec{\sigma}_{pred}(\mu)))$$

• "most sensitive variable" map:

Back-up: B-L model interpretation

• LHC constraints on B-L model:

link