BSM Higgs Searches at LHC

Lianliang MA Shandong University

CLHCP 2020 workshop (online) Nov. 6-9, 2020

Outline

Brief introduction to signal models

> Neutral Higgs searches

Charged Higgs searches

Not full list of searches

Only selected latest results

Precision constraints

> Summary

ATLAS physics results

CMS physics results

Benchmark Model for BSM Higgs

Resonances in theory models: NWA, LWA, RS graviton, 2HDM,

- NWA: narrow width approximation; LWA: large width assumption
- RS: the bulk Randall–Sundrum (RS) model
- The two-Higgs-doublet models (2HDM), the simplest extension
 - 5 Higgs: h/H (CP even), A (CP odd), H^{\pm}
 - α : mixing angle between the two CP-even Higgses
 - $tan\beta$: ratio of the two vacuum expectation values (v2/v1).
 - m_{12}^2 : for a soft breaking of the \mathcal{Z}_2 symmetry (avoid tree-level FCNC)
 - Type-I, only Φ_2 couples to all quarks and leptons
 - Type-II, Φ_1 couples to down-type quarks and leptons and Φ_2 to up-type quarks.
- To explain the neutrino mass in 2HDM (<u>arXiv:1904.07883v1</u>)
 - Type I seesaw: Majorana mass term added for right-handed neutrinos
 - Type II seesaw model: a scalar triplet, with a neutral scalar that is responsible for generating neutrino masses at the eV scale
 - 7 scalar bosons: $H^{\pm\pm}$, H^{\pm} , A^0 (CP odd), H^0 and h^0 (CP even)

BSM Higgs Production

Neutral Higgs production A/H

Charged Higgs production H^{\pm}

Searches at LHC

Search for Heavy Resonance in yy

- Search for high mass resonance for spin-0 resonant and spin-2 graviton
- Signal: double-sided crystal ball
- Background: power-law function
- \blacktriangleright Largest excess: 3.3 σ at 684 GeV (1.3 σ)

m_{γγ} [GeV]

$H \rightarrow ZZ \rightarrow 41$ and IIvv

- Narrow width approximation: ggF and VBF production modes
- Large width assumption: 1%, 5%, 10%, and 15%, with the consideration of interference effects with background
- > 4-lep with 5 SRs in m_{4l} : VBF-high, ggF-high in 4e, 4µ, 2e2µ, ggF-low-4l
- \geq 2l2v with 4 SRs in m_T: (2e2v, 2µ2v) \otimes (ggF, VBF)

Lianliang Ma Shandong U.

arXiv:2009.14791

arXiv:2009.14791

$H \rightarrow ZZ \rightarrow 41$ and IIvv

$H \rightarrow WW \rightarrow IvIv$ and Ivqq

- Heavy resonance in ggF and VBF modes
- \geq 2l2v: eµ in OJ, 1J, VBF, and ee/µµ in VBF
- Interference considered for both ggF and VBF

JHEP03 (2020) 034

JHEP03 (2020) 034

$H \rightarrow WW \rightarrow IvIv$ and Ivqq

- A simultaneous fit on done all
 2l2v and lvqq SRs and CRs (1bin)
 for WW, top, DY, W+jets
- No excess observed, limits set on σ xBr, or m_H vs tanβ
- Ivlv sensitivity: DF dominates for
 <800 GeV, similar for higher
- lvqq sensitivity: resolved
 dominates at mass <400 GeV
- Ivlv dominiates for mass <400
 GeV, Ivqq more sensitive at high masses

$A/H \rightarrow \tau \tau$

b-veto regions in lep-had and had-had

b-tagged regions in lep-had and had-had

 $m_T^{\text{tot}} = \sqrt{(p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2 - (p_T^{\tau_1} + p_T^{\tau_2} + E_T^{\text{miss}})^2}$

$A/H \rightarrow \tau \tau$

Phys. Rev. Lett. 125 (2020) 051801

- > No significant excess in the mass range of 0.2-2.5 TeV
- Lep-had dominates at the low masses, but had-had at the high masses
- Larger improvement than 36.1 fb⁻¹ results, especially for high mass
- > Largest excesses at 400 GeV: 2.2σ at ggF, 2.7σ for bbH

Z'/A→Zh, h→bb

- Search for heavy vector boson Z', or a heavy CP-odd scalar boson A
- ▶ 8 signal regions: (0-lep, 2-lep)⊗(1b-tag, 2b-tag)
 ⊗(resolved, merged)
- ➤ Control regions: (1b-tag, 2-btag) ⊗(resolved, merged) for 0-lep, and 1 top CR in eµ for 2-lep

$Z'/A \rightarrow Zh, h \rightarrow bb$

- Search for heavy vector boson, Z', or a heavy CP-odd scalar boson A
- For Z' signal,
 - Model A: ferminoic coupling comparable with bosonic coupling,
 - Model B: fermionic coupling suppressed
- > Largest excess: 1.6σ at 500 GeV in 2-lepton channel

H→ZA→llbb

> Interesting channel in several scenarios such as 2HDM when $\cos(\beta - \alpha) \rightarrow 0$ (SM-like h)

> Mlljj vs mjj plane binned into elliptical regions with $\rho=i$, containing roughly the fraction of signal events expected within *i* standard deviations in the 2D distribution

Charged Higgs

$H^{+} \rightarrow tb$ in the 1 Lepton Channel

- Key channel in several new physics searches,
 2HDM (MSSM) with high H⁺ mass
- A neural network algorithm implemented
- > No excess observed, limits set on σxBr

Lianliang Ma Shandong U.

ATLAS-CONF-2020-039

H⁺→tb in the All-Had Channel

Triggered with H_T^{tirg}>900 (small-R)

p_T^{trig}>360 GeV with mass>30 GeV(LR)

JHEP07(2020)126

 $m_{\mu\pm} \gtrsim 5 m_{\rm top}$

- Split in *n*-jets, boosted t/W and *n* b-tags
- Target resolved (mtb) and boosted(HT)

HT: scalar pT sum of all selected jets

2020-11-08

$H^+ \rightarrow cs$ for low H^+ mass

- Key channel in low tan β search in tt 1 e/μ, ET^{miss}, ≥ 4 jets (2 b-jets)
- Use kinematic fit with constraints on top mass mjj of 2 non-b jets as final discriminant
- Categories based on c-tagging (loose, medium, tight)

$H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ in pair production

- Pair production of doubly charged Higgs
- Three channels: two same-sign charge,

three or four leptons

Prompt lepton backgrounds from MC, nonprompt leptons from data

The mass difference between $H^{\pm\pm}$ and H^{\pm} bosons is > 100 GeV

$H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ associated H^{\mp}

Targets range $|m_{H^{\pm\pm}} - m_{H^{\pm}}| < 5 \text{ GeV}$

Associated production of singly charged
 & doubly charged Higgs bosons

ATLAS-CONF-2020-074

- Three channels: two same-sign charge, three or four leptons
- Prompt lepton backgrounds from MC, non-prompt leptons from data

Combined Higgs Measurements

Reinterpretation of combination of Higgs measurements in several MSSM benchmark scenarios

➢ M_h¹²⁵ scenario:

- All superparticles are so heavy that production and decays of the MSSM Higgs are only mildly affected by their presence
- The loop-induced SUSY contribution to the couplings of the light CP-even scalar are small
- The heavy Higgs bosons with masses up to 2 TeV decay only to SM particles

Analysis		Integrated
		lumi (fb ⁻¹)
$H \rightarrow \gamma \gamma$	(all production modes)	139
$H \rightarrow ZZ^* \rightarrow 4\ell$	(all production modes)	139
$H ightarrow b \bar{b}$	(VH)	139
$H \rightarrow WW^*$	(ggH, VBF)	36.1
$H \to \tau \tau$	(ggH, VBF)	36.1
$H \rightarrow b \bar{b}$	(VBF)	24.5 - 30.6
$H \rightarrow b \bar{b}$	$(t\bar{t}H)$	36.1
$H \rightarrow \text{multilept}$	ton $(t\bar{t}H)$	36.1
$H \rightarrow \mu\mu$ (all production modes)		139

Summary

- Presented latest results for BSM Higgs searches from the ATLAS and CMS
- No significant excess observed, but some results with a local excess with about 2-3σ significance
- Searches extended to new regimes: higher/low masses, new channels, ...

These plots NOT updated to all the latest results

Thank you!

H→ZA→IIbb

Since the shape of the signal is not exactly Gaussian, concentric elliptically shaped regions are defined in the parameter space using a parameter called ρ . Specifically, an ellipse with $\rho = i$ contains roughly the fraction of signal events expected within *i* standard deviations in a 2D distribution. Selected events in the $m_{\ell\ell jj}$ vs. m_{jj} plane are classified in six regions around the center of the ellipse defined for each signal point. The regions are built in ρ steps of 0.5, from 0 to 3, as illustrated in figure 4 (right), and lead to a template containing six bins used to perform the statistical analysis. By construction, the bulk of the signal is located at small values of ρ . The yield in data and the expected yields in simulation are reported in table 1 for each elliptical bin under the mass hypothesis $m_{\rm H} = 500 \,{\rm GeV}$ and $m_{\rm A} = 200 \,{\rm GeV}$. The ee and $\mu\mu$ categories are summe

Branching Ratio of A(CP odd) Decays

H++,	\rightarrow	W+	W+
•		- •	

Charged Higgs boson mass	$m_{H^{\pm\pm}} = 200 \mathrm{GeV}$	$m_{H^{\pm\pm}} = 300 \text{GeV}$	$m_{H^{\pm\pm}} = 400 \mathrm{GeV}$	$m_{H^{\pm\pm}} = 500 \text{GeV} \text{ or } 600 \text{GeV}$			
Selection criteria	$2\ell^{\rm sc}$ channel						
m _{jets} [GeV]	[100, 450]	[100, 500]	[300, 700]	[400, 1000]			
S [rad.]	<0.3	<0.6	<0.6	<0.9			
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	<1.9	<2.1	<2.2	<2.4			
$\Delta \phi_{\ell\ell, E_{\mathrm{T}}^{\mathrm{miss}}}$ [rad.]	<0.7	<0.9	<1.0	<1.0			
$m_{x\ell}$ [GeV]	[40, 150]	[90, 240]	[130, 340]	[130, 400]			
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	>100	>130	>170	>200			
Selection criteria	3ℓ channel						
$\Delta R_{\ell^{\pm}\ell^{\pm}}$ [rad.]	[0.2, 1.7]	[0.0, 2.1]	[0.2, 2.5]	[0.3, 2.8]			
$m_{x\ell}$ [GeV]	>160	>190	>240	>310			
$E_{\rm T}^{ m miss}$ [GeV]	>30	>55	>80	>90			
$\Delta R_{\ell \text{jet}}$ [rad.]	[0.1, 1.5]	[0.1, 2.0]	[0.1,2.3]	[0.5, 2.3]			
$p_{\mathrm{T}}^{\mathrm{leading jet}}$ [GeV]	>40	>70	>100	>95			
Selection criteria	4ℓ channel						
$m_{x\ell}$ [GeV]	>230	>270	>360	>440			
$E_{\rm T}^{ m miss}$ [GeV]	>60	>60	>60	>60			
$p_{\mathrm{T}}^{\ell_1}$ [GeV]	>65	>80	>110	>130			
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\min}$ [rad.]	[0.2, 1.2]	[0.2, 2.0]	[0.5, 2.4]	[0.6, 2.4]			
$\Delta R_{\ell^{\pm}\ell^{\pm}}^{\max}$ [rad.]	[0.3, 2.0]	[0.5, 2.6]	[0.4, 3.1]	[0.6, 3.1]			

	2ℓ ^{sc}		3ℓ			
SR	ee	eμ	μμ	Number of same-flavour opposite-charge pairs		4ℓ
				0	> 0	
Prompt lepton	1.66±0.28	4.3±0.5	2.30±0.26	1.62±0.20	17.2±1.6	1.69±0.19
Charge-flip	0.17±0.07	0.102 ± 0.034	-	_	_	_
Non-prompt lepton	0.3±0.25	0.65 ± 0.33	0.39 ± 0.19	0.36±0.23	$0.9{\pm}0.6$	0.41 ± 0.25
Total background	2.1±0.4	5.1±0.6	2.69 ± 0.32	1.98±0.29	18.1±1.6	2.10±0.30
Data	4	8	1	1	17	1
<i>n</i> ₉₅	6.72	9.21	3.24	3.27	9.52	3.31
$H^{\pm\pm}H^{\mp\mp}$	1.99±0.24	5.3±0.6	3.03±0.35	2.63±0.30	7.6±0.9	1.50 ± 0.17
A _{PP} [%]	0.087	0.233	0.132	0.115	0.333	0.065
$H^{\pm\pm}H^{\mp}$	0.57±0.07	1.43±0.16	0.81±0.09	0.43±0.05	1.35±0.16	0.156 ± 0.020
A _{AP} [%]	0.043	0.109	0.62	0.033	0.103	0.012

JHEP07(2020)126

H⁺→tb in the All-Had Channel

