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What is machine learning

• A collection of algorithms (PCA, SVM, Random Forest, Boosting 
Trees, Neural Network …) that let computer learn patterns by 
themselves. 

• Keywords: Data driven; Functional; Optimize; Software 2.0;

• Minimize 𝑙𝑜𝑠𝑠 𝑓 𝑥, 𝜃 , 𝑦 → 𝑓
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Applications of machine learning



ML for HEP

• In May 2014, ATLAS held Kaggle competition: Higgs Boson 
Machine Learning Challenge

• Goal: distinguish Higgs signal from exotic background

• The winner uses ensemble of neural networks

• In this competition, TianQi Chen and Tong He developed 
XGBoost, which became the most popular ML tool on Kaggle!

• Boosted trees and deep neural network are the most 
frequently used ML tools in HEP.

Higgs Boson Discovery with Boosted Trees. TQ Chen and T He, HEPML 2014



A single decision tree

Task: Asian girl?

Score: 2

Black Hair

Black Eyes

Y

Y

N

N

Score: 0.5

Score: 0.1

Splitting nodes are chosen to minimize the MSE, entropy or Gini factor.



Ensemble of trees: random forest (in parallel)

Black 
Hair

Speak 
Chinese

Live in 
China

Score: 3 Score: 2 Score: 5

Tree 1 Tree 2 Tree 3

IsAsian(      ) = 3 + 2 + 5 Low variance
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Ensemble: boosted decision tree (in sequential)

Black 
Hair

Speak 
Chinese

Live in 
China

Score: 2 Score: 3 Score: 5

Tree 1 Tree 2 Tree 3

Improve the tree by training residual of the previous tree.

Low bias.
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𝒕 ҧ𝒕𝑯 identification using boosted decision tree (BDT)

• Motivation: the coupling between
the heaviest SM particle top quark
and Higgs is important for tree
level top Yukawa coupling. 

• ATLAS use XGBoost to look for 
top associated Higgs. 

• Signal: 𝑡 ҧ𝑡𝐻, 𝐻 → 𝛾𝛾

• Noise: 𝑡 ҧ𝑡𝛾𝛾, continuous gamma 
and non 𝑡 ҧ𝑡𝐻 Higgs events.

ATLAS-CONF-2019-004 8

http://cds.cern.ch/record/2668103/files/ATLAS-CONF-2019-004.pdf?version=1


Higgs identification using deep learning

P.Baldi,P.Sadowski,& D.Whiteson, Nature Commun.5, 4308 (2014) 

Signal

Background

“Our analysis shows that recent advances in deep learning 
techniques may lift these limitations by automatically 
discovering powerful non-linear feature combinations 
and providing better discrimination power than current 
classifiers – even when aided by manually-constructed 
features.”
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BDT vs DeepCSV



What is deep neural network

DNN: artificial neural network with multiple hidden layers



How does deep neural network learn: back propagation



Convolution Network

Densely connected Locally connected Locally connected
and sharing weights

1D convolution



CNN for jet tagging



Point Cloud in momentum space
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Recurrent and Recursive network for q/g jet tagging

[G. Louppe, K. Cho, C. Becot, K. Cranmer, arXiv: 1702.00748; 
Taoli Cheng, 中国科学院大学, Comput Softw Big Sci (2018) 2: 3

Gluon Jet Quark Jet Recurrent Net Recursive Net
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DeepJet to identify jets originating from b quarks

高能所： DeepJet

• DeepJet performs better than the previous 
widely used DeepCSV

• DeepCSV: 4 hidden layer fully connected
network, 100 neurons per layer

17

CMS-DP-2018-058



Permutation symmetry: Particle/Energy flow network

JHEP 2018, 13, P.T. Komiske, E.M. Metodiev, and J. Thaler. 1810.00835 by Y.S. Lai

FCN, RNN, RcNN all break the permutation symmetry
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Graph CNN for point cloud – more local structure

Arxiv:1801.07829.



Jet tagging via ParticleNet

Jet Tagging via Particle Clouds, HuiLin Qu and Loukas Gouskos, 2020

• Key Idea: kNN + Edge Conv + PointCloud Net
• Better with PID

Edge Conv
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Graph CNN for boosted Higgs reconstruction

2003.11603, X. Ju et al.; 2010.05464, Jun Guo, Jinmian Li, and Tianjun Li;  

Fake signal
suppressed

Reconstructed 𝑚𝐻 from GCN 
is closer to 125 GeV

𝑝𝑇 𝐻 > 300 𝐺𝑒𝑉



Recurrent net for MRPC and RPC time resolution regression

Input: RPC waveforms (18 ns * 4 channels * 2)

Network structure: 
3-layer LSTM (hidden size ~700)
3-layer MLP in series 
1-dim output: ToF_predict

XiangYu Xie, USTC
Talk: 2020-11-07
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ML for Heavy Ion Collisions

• Many parameters contribute 
to the same observable

• How to constrain one 
physical parameter?

• Information survived?

• Encoded in final state?

• How to decode?
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CNN for QCD Phase transition

Nature Communications 2018, LG. Pang, K.Zhou, N.Su, H.Petersen, H. Stoecker, XN. Wang. 



Stacked U-net for relativistic hydrodynamics

arXiv: 1801.03334; NPA2018, H.Huang, B.Xiao, H.Xiong, Z.Wu, Y. Mu and H.Song
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Point cloud network for QCD EoS
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Point Cloud Net for impact parameter determination

See also: 2008.11540 by Fupeng Li,  Yongjia Wang, Hongliang Lv, Pengcheng Li, Qingfeng Li, and Fanxin Liu 27



Quantum Machine Learning

• Huge Hilbert space

• Before measuring, the states are in quantum parallel

• Period of quantum interference can be measured

• No classical correspondence for entanglements

• Feynman: simulate one quantum system with another

• Quantum Machine learning: the best of two worlds



Quantum Machine Learning for HEP: QSVM

S. L. Wu and C. Zhou (U. Wisconsin) 40th International Conference on High Energy Physics July 28, 2020

Many quantum machine learning algorithms are inspired by variational quantum eigen solver.
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Quantum GAN

• Generative Adversarial 
Network (GAN) is quite 
successful in image and 
video generation.

• GAN is used as fast emulator 
of MC event generators 
(GEANT4).

• Real Quantum Generator!
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Summary

• ML plays important role in HEP and HIC

• ParticleNet/GCNN might be the way for HEP

• What has not been mentioned
• Bayesian analysis
• Attention network
• Capsule network
• Uncertainties
• Interpretation
• BDT, GAN and Flow models for high dim numerical integration
• Various applications in detector design, pileup mitigation and 

event(track) reconstruction

The topics are selected and biased by the limitation of 
personal knowledge



Backups



Bayesian analysis

Walk in parameter space of physical model.



Constrain QCD EoS

PRL114, 202301 Scott Pratt, Evan Sangaline, Paul Sorensen, and Hui Wang



Constrain shear and bulk viscosity

PRC 94.024907, J. E. Bernhard, J. Scott Moreland, S. A. Bass, J. Liu, U. Heinz



Constrain heavy quark diffusion coefficient

PRC. 97 (2018), 014907, Yingru Xu, J.E. Bernhard, S.A. Bass and M. Nahrgang and S.S. Cao



Constrain Jet energy loss distribution

PRL2019, Yayun He, L.G. Pang and X.N. Wang 37



Uncertainty

• Split data into K groups

• Train with K-1 groups

• Get K validation accuracy

• The uncertainty is the 
standard deviation of the K 
models

• Cons: training deep neural 
networks is computing 
intensive

K-fold Cross validation
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Bayesian Neural Network



Monte Carlo dropout

Switch on dropout at testing stage to get an ensemble of networks. 



Interpretable ML: global explanation

Global interpretation: staring with empty picture, visualize 
what has been learned by each neuron using gradient ascent. 



Interpretable ML: local explanation

• LIME; Surrogate; Activation map; Layer-wise relevance 
propagation, attention

arXiv:1906.06429, L.-G. Pang, K. Zhou and X.-N. Wang


