

Exotics Searches (Non-SUSY)

郭军 Shanghai Jiao Tong University

CLHCP online, 10/06-10/09/2020

Why Exotics?

- There remain questions unanswered by the SM
 - Why 3 generations of quarks & leptons?
 - Hierarchy problem
 - Dark matter/energy
 - ...
- Many extensions to SM aim to solve these problems, which generally predict new resonances
 - Compositeness, Extra dimensions, SUSY, ...
 - q*, l*, G*, Z'/W', ...

Jun Guo, Shanghai Jiao Tong Univ.

Exotics Search at LHC

- Searches using all possible final states by ATLAS & CMS
 - Mostly hunt high mass bumps
 - Explore unconventional signatures
- Be as model-independent as possible
 - Interpret with benchmark models
- New techniques are explored in different ways
 - Combined performances
 - Machine learning

Jun Guo, Shanghai Jiao Tong Univ.

Exotics Search at LHC

Unable to cover all the analyses. Only show the latest results

Keep balance between different topics and final states

Only a quick glance of Dark Matter results, more of which can be found in the dedicated DM plenary talk and parallel talks

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Leptoquarks (LQ)

- Hypothesized in many BSM models(GUTS, RPV, SUSY, ...)
- Carry both lepton and baryon numbers; Couple to lepton and quark at the same interaction vertex
- Raise interests due to B anomalies observed in various experiments
 - LQ possibly contribute to LFU anomalies at tree level

Leptoquark: tl tl

- Investigate cross-generational couplings
 - Signature: te te or tµ tµ
 - Large jet used for top quark decay (m_{LQ} > 1TeV)
- BDT is exploited for LQ signal, tt, Z+jets
 - Use kinematic and jet substructure variables

• Limits on m_{LQ} : 1.48(1.47) TeV for $e(\mu)$ channel

Leptoquark: tτ tτ

- Assumption of no cross-generational couplings
- $1e/\mu + \ge 1 \tau_{had}$, or $\ge two \ l's(e/\mu)$
- Various signal regions are defined based on multiplicity and flavor of leptons
- Completely limited by statistics.
 - Main sensitivity is from $1l + 1 \tau_{had}$ channel
- Limits on m_{LQ} : 1.43 TeV for exclusive t τ decay

Leptoquark: singly and pairly produced

- LQ LQ-> tτbν; LQ-> tτν
- Both t and τ decay hadronically, high MET
 - Boosted top case, previously not examined
- The range of lower limits on the LQ mass depends on λ (LQ-lepton-quark coupling) and the leptoquark spin
 - Most stringent to date
 - Also probe the parameter space preferred by the B anomalies

Jun Guo, Shanghai Jiao Tong Univ.

Vector-like Quarks

H

 \sim

arxiv.org/abs/2008.09835

- Predicted by Composite Higgs and Little Higgs models to address hierarchy problem
- B->bH or bZ: Fully hadronic final states
 - Boosted H or Z are considered; events categorized by jet multiplicity: 4, 5, 6
- Challenge: jet combinations to reconstruct B quark

Lower mass limits: 1.57 TeV for pure bH decay; 1.39 TeV for pure bZ decay

137 fb⁻¹ (13 TeV) Events / 50 GeV 20 CMS $m_{\rm B} = 1000 \, \text{GeV}$ 4-iet channel. bHbZ mode m_p = 1200 GeV 15 m_p = 1400 GeV $m_{p} = 1600 \text{ GeV}$ m_p = 1800 GeV Background Data Systematic Uncertainty <u>data - bkgd</u> bkgd 1000 500 1500 2000 m_{VLO} [GeV]

Jun Guo, Shanghai Jiao Tong Univ.

LFV Z->et or µt

- Neutrino oscillation indicates LFV, motivating search for LFV in charged lepton interactions
- Search for Z -> hadronic τ + light lepton(e/μ)
 - Main bkgds: Z-> ττ, Z->ll, τ faked by jet
- NN used for better discrimination against bkgd
 - Fit NN in SR and CR to extract signal and constrain uncertainties

Supersede the best limits set by LEP more than two decades ago! Mainly limited by statistics

	Observed (expected) uppe	er limit on $\mathcal{B}(Z o \ell au) \; [imes 10^{-6}]$
Experiment, polarisation assumption	e au	μau
ATLAS Run 2, unpolarised τ	8.1 (8.1)	9.9(6.3)
ATLAS Run 2, left-handed τ	8.2(8.6)	9.5~(6.7)
ATLAS Run 2, right-handed τ	7.8(7.6)	10(5.8)
ATLAS Run 1, unpolarised τ [17]		17 (26)
ATLAS Run 1+Run 2 combination, τ		9.5~(6.1)
LEP OPAL, unpolarised τ [10]	9.8	17
LEP DELPHI, unpolarised τ [11]	22	12

Jun Guo, Shanghai Jiao Tong Univ.

ZH resonance

b,

b,

ATLAS-CONF-2020-043

• ZH -> ll bb or vvbb

Jun Guo, Shanghai Jiao Tong Univ.

- H->bb: resolved or merged
- m_T/m is used for 0-lepton/2-lepton respectively
- Many technique improvements besides more data
 - btag, I selection, jet, selection optimization, ...
- Interpret for HVT Z' and CP-odd scalar A
 - Limit improves by 50% at 300 GeV and 500% at 5 TeV, compared to previous partial data result

ZH resonance

- Dedicated categories defined to probe VBF production of heavy resonances
 - Exploit forward jets with large pT

Non-resonant di-lepton (ee/µµ)

- Probe two-quark and two-lepton Contact Interaction (CI)
- Functional form is fit to data for dilepton invariant mass in CR
- Set limits on CI scale Λ for various chiral structures
 - Strongest limit is from LL constructive : 35.8 TeV

arxiv.org/abs/2006.12946

Dark Matter (DM)

- Weakly Interacting Massive Particles (WIMPs) are attractive at colliders
 - Lead to correct relic density of nonrelativistic matter
 - Couple to SM particles
- Search DM at colliders
 - Rely on visible particle(s) produced in association with invisible DM
- Simplified Mono-X signatures are largely investigated at the LHC
 - ✓Mono-jet
 - ✓ Mono-photon
 - ✓Mono-V
 - ✓ Mono-Higgs

✓.....

Jun Guo, Shanghai Jiao Tong Univ.

DM: Mono-jet

ATLAS-CONF-2020-048

Jun Guo, Shanghai Jiao Tong Univ.

DM: Mono-jet

ATLAS-CONF-2020-048

Highest-momentum (1.9 TeV) monojet recorded so far by ATLAS.

Jun Guo, Shanghai Jiao Tong Univ.

DM: Mono-Z

arxiv.org/abs/2008.04735

- Z(->ee/µµ)+MET
- Divide into 0-jet and 1-jet categories to account for different S/B ratios
- Interpret with DM models and other scenarios of BSM
 - MET is used for all models, except for 2HDM+a for which m_T is used

Simplified DM: highest mass limit improved by 150 GeV than previous one 2HDM+a: best sensitivity for $m_H=1$ TeV, where $m_a>440$ GeV

Jun Guo, Shanghai Jiao Tong Univ.

DM: VV+MET

arxiv.org/abs/2010.06548

- Novel search in previously uncovered final states:
 - sχχ -> VV(hadronic decay) + large MET
 - Dominant background: V+jets
- Novel track-assisted reclustering (TAR) improves resolution of jet substructure observables, to better reconstruct s->V(qq)V(qq)
- Sensitivity dominated by merged category. Interpret with dark Higgs model
 - Exclude $m_{Z'}$ up to 1.8 TeV for $m_s = 210 \text{ GeV}$

Unconventional Signatures: Long Lived Particles(LLP)

- Most new physics analyses aim at prompt decays from signal, while there is huge phase space of possible BSM signatures
- LLP is predicted by many extensions to SM
 - Decay in the detector after a few cm
- Technical challenges:
 - Non-standard reconstruction
 - Displacements, timing and ionization
 - Dedicated triggers
- Advantages:
 - Probe unexplored models at TeV scale
 - No irreducible SM background

Long Lived Particles

<u>CMS-PAS-EXO-19-021</u>

Search for displaced tracks and displaced vertices within a dijet system

□Inclusive search, with at least one LLP having displaced vertex, as modelindependent as possible

Exclude σ > 0.07fb for cτ₀ ∈(2mm, 250mm) & m_X > 500 GeV

Jun Guo, Shanghai Jiao Tong Univ.

Exclude $\sigma/\sigma_{SM} > 0.01$ for $c\tau_0 \in (1mm, 1m)$ & $m_S \in (40 \text{GeV}, 50 \text{GeV})$

GBDT is used for better discrimination

• Use track and cluster information

Long Lived Particles

- Target LLP with decay length between 0.1 and 100 mm that each decay into ≥ 2 quarks
 - Achieved high sensitivity to decay lengths < 20 mm, by requiring two reconstructed vertices inside beam pipe
- For Long-lived neutralinos, gluinos and top squarks, pair production is excluded for > 0.08 fb for mass (0.8, 3 TeV) and decay length (1, 25 mm)

	Predicted multijet signal yields					
$d_{\rm VV}$ range	Predicted background yield	0.3 mm	1.0 mm	10 mm	Observed	
0–0.4 mm	0.235 ± 0.003 (stat) ± 0.059 (syst)	0.7 ± 0.2	0.7 ± 0.1	0.20 ± 0.02	0	
0.4–0.7 mm	0.096 ± 0.003 (stat) ± 0.031 (syst)	0.8 ± 0.2	1.1 ± 0.2	0.10 ± 0.01	0	
0.7–40 mm	0.011 ± 0.001 (stat) ± 0.006 (syst)	0.8 ± 0.2	5.4 ± 0.9	12 ± 1	0	

Jun Guo, Shanghai Jiao Tong Univ.

Summary

>Relentless efforts are made by the LHC to explore new physics in many ways, productive with excellent results covering different aspects

>Many more new Run-2 results to come

>Better analysis techniques could yield sensitivity beyond expectation

>LLP/unconventional signatures become more important

>0-background searches benefit more from luminosity increasing

Keep Working

Jun Guo, Shanghai Jiao Tong Univ.

Keep Working

Jun Guo, Shanghai Jiao Tong Univ.