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Roadmap to High Luminosity LHC
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= The high-luminosity LHC (HL-LHC) is intended to provide 300 fb~! of data each year
during an operating period of roughly 10 years.

— Aninstantaneous luminosity of £~7.5 X 103*cm™2?s7?!

— An average of 200 inelastic proton-proton interactions per bunch crossing (pile-up,
< u>=200)

e The ATLAS detector will be upgraded to cope with the increased occupancy and data
rate.



The Upgrades of ATLAS Detector

= Phase-l (happening)

New small wheels of Muon Spectrometer (the only upgrade)

— - = Phase-ll (foreseen in 2026)

All-silicon new Inner Tracker (ITk)

New inner Muon barrel trigger chambers
High-n muon tagger
New High-Granularity Timing Detector

Calorimeters (only TDAQ)

New readout electronics for all systems

Tile calorimeters

LAr hadronic end-cap an
forward calorimeters

Toroid magnets | Ar eleciromagnefic calorimeters}

Solenoid magnef

[ semiconductor tracker]

Muon chambers




Upgrade projects the Chinese clusters are involved in
* Inner Tracking Detector
* Muon Spectrometer

* High Granularity Timing Detector



Inner Tracker




Inner Tracker Strip Detector
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+ Radiation hard frontend readout ASIC design
+ High performance Strip detector module production

+ Novel CMOS pixelated strip sensor characterization

* |n close collaboration with RAL and UK community



Radiation Hard FE ASICs

4+ ABC-STAR chips with readout architecture redesigned to cope
with the increased trigger rate

+ Significant contributions to design & verification of digital blocks.

4+ Prototype chips already tested and used for module assembly
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W. Lu et al, 2017 JINST 12 C04017

+  Export license available for shipment of chips from CERN to IHEP



TID “Bump”

4+  Higher current draw with radiation due to

Total lonizing Dose (TID)

+ Undesired capacity redundancy on powering and
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4+  System level solution: chips pre-irradiated
to pass the TID bump. P i
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4+ Quality Assurance: at batch level, TID measurements of pre-irradiated chips with x-ray
machine (setup at IHEP)
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Infrastructure Readiness

4+  Constructed ISO Class 7 clean room at IHEP dedicated for the ITk upgrade project

High Speed Bonding Automat?c Probe TCT System Dry Box Electrical Test
Machine Station Setup

-

\ -

iz .

SmartScope Glue Dispenser

Climate Chamber Mini Chiller

Microscope

4+ Nearly all instruments required for module production in place



Module Prototyping

4+  Producing module prototypes exactly following the QC steps

» Precision control at each step to deliver high quality modules: e.g. glue
amount and thickness, wire strength = impacts on module performance
(heat dissipation, mechanical support, wire bonding)

Calibration of glue amount

“ Glue Robot

.

Metrology of glue thickness

L. Poley et al 2020 JINST 15 P09004 10




Testing the Module

+

Current [nA]

+

Input Noise
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Sensor

#*

|-V characteristic of sensor before and after assembly

» charge collection study of sensor prototype (mini sensor) using Sr90 with the ALiBaVa system
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Testbeam Measurements

+ Decisive performance evaluation of prototype modules using DESY beam

4+ Significant contributions to beam test campaigns
» Test setup, data taking, data analysis and reconstruction software development
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4+  Developing new software for future ITk strip beam “F / ‘.
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Site Qualification and Pre-production

Start
01/10/19

|2020 |2021

|2022 |2023 |2024 |2025

Sensor Sensor Production and QC

Preproduction 02/11/20 - 22/11/24

AN MR IAA AnMAA AN

ASIC Pre-production
08/11/19 - 12/04/21

Module pre-
production
02/07/20 - 24/06/21

Stave core

pre-prod

ER LT
Petal core
pre-
production
02/12/20 -
13/07/21

Barrel ready : 25/06/2025
EC-1 ready: 25/03/2025
EC-2 ready: 17/06/2025

ASIC production
16/07/21 - 17/08/23

Short strip modules
02/11/23 - 01/05/25

Long strip modules
04/02/22 - 01/11/23

EC Modules
04/02/22 - 04/12/24

LS Stave Core Production
08/10/21 - 25/09/23

Petal Core Production
15/09/21 - 18/07/23
Reception testing of LS staves
03/06/22 - 06/12/23
Populate L2 and L3
13/07/22 - 01/01/24
Petal reception tests DESY
01/04/22 - 04/11/24
Petal insertion to EC DESY
04/11/22 - 17/02/25

Petal reception tests Nikhef
31/10/22 - 17/01/25

SS Stave Core
Production
26/09/23 - 09/10/24

Reception testing of SS staves
02/02/24 - 21/05/25

Populate L1 and LO
12/02/24 - 18/06/25

Petal insertion to EC NIKHEF Barrel ready
24/02/23 - 12/05/25 25/06/25
* o
EC1ready  EC2 ready
25/03/25 17/06/25

Preparing for site qualification (postponed, likely by video)

After being qualified, we will start the pre-production (5% of modules)

Finish
12/10/25
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Muon Spectrometer
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Muon Spectrometer

= Phase-ll mainly about trigger

™~

L —— TGCs

= New inner RPC stations

= Monitored Drift Tubes information to
be added at the hardware trigger

" |nvestigating the addition of a high-n
tagger

15



Test on Two-end Readout RPC

e 8-channels FEE with Amplifier & Discriminator developed at USTC
* Equipped on both ends of the honeycomb readout panel

Side View

scintillator

<

; ISD‘ — ‘10‘ — ‘10‘ — ‘2:\‘-\‘-\%0‘ T
Threshold scan on FEE™™

* Two identical glass RPCs (1.4x0.4m) tested together with cosmic ray
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RPC Signal Attenuation Study

Normalized current

Signal attenuation found in simulation * Experimental setup to quantify the charge
B ettt Tttt attenuation rate
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Lower graphite surface resistivity pg leads to stronger attenuation
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RPC Time Resolution Study using Machine Learning

To study a more intrinsic g; of thin-gap RPC

Neural network setup: (Long short term memory)
LSTM and (Multi-Layer Perceptron) MLP

Data augmentation method utilized to fully explore
the data usage

The network predict a g, = 261 ps (HV at 6300 V)
— 50% leading edge method (CFD): g, = 430 ps

ML gives a better RPC intrinsic g;, compared to 50%
point method.

Further optimization is ongoing. Will study relation
between g, and gap size.

See more in Xiangyu Xie’s talk

N entries

o1 02 B - on
: i i2 . in
o)

q s ;ﬁé}!ﬁn

(b) Long Short Term Memory network

Distribution of ToF_Residual

u=0.016ns
o2 =0261ns

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Tof residual [ns]
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RPC R&D @ SJTU

* Clean room has been built
« Cosmic ray test of glass RPC (30x33cm?)
— efficiency reaching 95%, compatible with USTC result

Current Vs HV
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* Gas flow simulation to optimize gas velocity uniformity, and to minimize vorticity by adjusting
positions of spacers, inlet, outlet, size of spacers, etc (preliminary results, to be further optimized)

* Will construct 1x1m? glass RPC chambers
* Will characterize 4 Bakelite prototype chambers with required humidity(~30-40%RH)

* Painting room for graphite coating is under investigation will be built soon.
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QA&QC Facilities

4+ Panel flathess measurement system built @USTC
# For Quality Control in the mass production

flatness of a 140 x 40 cm? readout panel

Track3

Sli

Trackl

25x1.2m?

oy, o oy

rénge [mm]

Sliderl

4+ Large cosmic ray trigger system built @SDU

o Two layers of scintillators

o Can fully cover the BIS type RPCs; Used for QC
and QA in the mass production.

— _
——— =

' 2.0x1.3m?
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High-n muon tagger

+

To extend the angular acceptance for muon identification
(new inner tracking system extends the tracking coverage
upto |n| < 4)

Detector requirements

» Compact: multiple layers with 5cm
+ High rate capability: 10 MHz/cm?
+ Large detection area: a few ten m?

Rate (MHz/cm2)

107'¢

—_
o
TT

[y
TTTTT

Simulated background
hit rates

I I P I AN AU ATANN EUEATIIN VU I
300 400 500 600 700 800 900

R(mm)

Novel micro-pattern gaseous detector (MPGD) concepts for the muon tagger are being

explored @USTC

Micro-resistive WELL detector (URWELL)

! Readout

WRWELL PCB Good timing capability
1 High rate solution .

Copper
Kapton
bLc
Epoxy glue
Pre-preg
Insulator layer N

Multiple-gap resistive WELL detector

e E2eh e

— TR’

— AR

— EmfLHTT

% — i HRPCeB
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MPGD Development for the Muon Tagger

High-rate uRWELL prototype
8 " P P X-rays (x10 for MIP)

[}

-

Small-pad readout

Amplitudes of cosmic-ray
signals. Efficiency ~ 80%
28 240F
8 220:
O 200
180
160
1401
120
100
80
60-
40
207

4-gap resistive WELL prototype

amp 1
Entries 1570
Mean 216.7
RMS 178.1

| I NI AR A WA WA A o o = i) PN IRRENY
% 100 200 300 400 500 600 700 800 900 1000
Amplitude (mV)

Rate capability for 8 keV

& c
- o Top—Coppgﬁr 3' ot
2 g,
0.8
0.6
........ 1mm colimator
Sensitive area 0.4 —— 3mm colimator
5cm X 5¢cm B6mm colimator {|
— 8mm collimator
. DL 02 Current Gain: 14000
: . 10° 10° 107
rate (Hz/cm2)
HRWELL PCB

Designing a 50cmx50cm
ULRWELL prototype

Designing a resistive Micro-Strip
Gaseous Chamber (MSGC) for
enhancement of efficiency
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TDC ASIC in MDT

+  The 3" version of the MDT TDC ASIC has been completed
by USTC and University of Michigan in cooperation.

+ Fabricated in 130 nm CMOS technology.

# Triple Module Redundancy is implemented in the
configuration registers and flow control logic blocks, to

enhance the radiation tolerance of this ASIC.

_’q Falling Edge

x2

Inputs > C=.
b b b p oarse
320MHz, 907 4
Clock ePLL B LT P 1 2N Rising Edge | ,212'
—— x2414
Bunch Count Reset nggere
N Court Roset Tri i 1
nt Count Reset riager " o
TTC > fEvort Count Rosot 1} Trigg Ring Hit Builder [*

decoder [uesterrosst Y| 4o face Buffer

Trigg "1 ‘ (1 GW) Triggerless |
Trigger \_i7 Channel
FIFO FIFO

J
(16W) Trigger Matching  |=— (4W) |

A I 4 ) «” -
toeco00000

©ececcoecoe

00000000 -
°

°

Trigger,

0 4o

®©oeooceo0cee
0000000

Setup Reg
fatus Reg T %24
1 Event Builderl [Channel Muxl 5 1 : : : : : : : : : : : :

JTAG TAP : 7

JTAGe—{—] cortolior ﬁ AR coe00c000ne e

x2
A Serial 8b/10b | Readout
O“‘P“‘SQ’T Interface FIFO (16W) BGA144 package

Block diagram of the TDC ASIC with TMR implemented



TDC ASIC in MDT

Test setup of TDC V3

+ Time resolution is similar with the 2"d version, better than 300 ps
FPGA board

: e
045 44 TDC Chip ¥4

—— Theoretical Prediction l I.l'

? o

0.05

0.00 + u T T
-1.00 —-0.75 —0.50 —0.25

0.00 0.25 0.50 0.75 1.00
Delay (LSB)

Time resolution (RMS)

— : . Digital 146 152.6
+ Power consumption increase due to partially TMR is only 3%.

Analog 104 105.2
+  Cable driving ability meets requirement (BER < 1le-14) Total 250 —

eye diagram of driving 1m cable eye diagram of driving 4m cable

+ Combination tests with MDT front-end electronics will be conducted before finalizing the design
and production.
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High Granularity Timing Detector

25



High-Granularity Timing Detector

Congratulations to HGTD people that this project got approved by CERN Research
Board as official ATLAS Phase-Il upgrade project on 18 Sep 2020

Hard-scatter jet

Spurious

ile-up jet
N - Jet from

pile-up

Very challenging to mitigate the pileup effects at HL

> Designed to distinguish between collisions occurring

very close in space but well separated in time

> Located just outside of ITk covering the forward pi..e_up‘ : »Ha,d .
region 2.4 < || < 4.0

Moderator + support
Ryt = 1100 mm

ssssss

» Consisting of 4 silicon layers

10% occupancy in 1.3 X 1.3 mm? pixels wodlll =

/| EMEC

> Expected timing resolution of 30-50 ps will greatly

Peripheral
on-detector
electronics

improve the pileup mitigation in the forward region

Compared to 180 ps RMS spread of collisions

Si sensors + ASICs
R, =120 mm, n=4.0
Ry =640 mm, n=2.4
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IHEP group in HGTD detector

+

IHEP takes Leading roles in HGTD project

*

*

Module group Level-2 coordinator(Zhijun Liang)

DAQ Level-2 coordinator (Juanan Garcia )

HGTD deputy project leader (Joao Guimaraes Da Costa)

Peripheral electronics Level-3 coordinator (Jie Zhang)

HGTD UPL 1 July 2020
A Henriaues
Institute Board Chair Resources/risk coordinator
i DePUty UPL J. Guimaraes
A. Seiden J. Guimaraes '
[ | T — T 1
Sensors EIOCITONIE S Luminosity | Tast Beam Modules and - Mechanics/ || Sim./Perf./
DAQ and ) Detector Units, || Demonstrator Assembly/ Physics
S. Grinstein | | B. Lund-J control L. Castillo . ) Integration
G. Kramberger un en.'\sen . C. Rizzi e S. Guindon = A.Schwartzman
N. Seguin ). Garcia D. Lacour M. Manzano A.Falou Y. W
J. Strandberg Masatti S. Malyukov 2l
Performance ASIC Luminosity DAQ/ Bare module Cooling Vessel & Production
testing monitoring hybridization Cooling plates
[ . .
Heaters/ Simulation
. Module Fl
Irradiations M I_?:cs_/ Infrastructure B bare sensor Services
i onitorin, )
Electronics g Module et ol e routing ET—
Specifications ry Interlocks Elies assemblies ASIC/
+ market et peripheral Assembly & Physics
survey elect. installation tool
v DAQ Interface installation tools
. DAQ
Services/ Timing Flex cable tails CO2 plant
patch calibration and & N2
panels clock
Detector
assembly &
installation
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HGTD sensor R&D at IHEP

4+ Low gain avalanche diode(LGAD) is developed for HGTD
+ Radiation hard, thin active layer (fast timing)

p-type Bulk

3 fo.'_.

» High S/B, no self-triggering

4+ IHEP & Beijing Normal University developed IHEP-NDL sensor

# Time resolution reach 30ps at high fluence 2.5*10°Neq/cm?
» Collected around 30fC(4fC) charge before (after) irradiation

———

4+  Next step (2021)
» Will develop full size (4*2cm?) sensors

+ Will compete with HPK/FBK in market survey

Tlme resolutlon after irradiation

2001 : AP Charge coIIectlon afterlrradlatlon

@ E o n 5: T T
= 1805 Nettron 2.5E15 ”eq 20°C = 4 5E- Neutron 2.5E15 neq 30°C + E
S ieor ~ NDLo# E g E
% 603 . 1 4-:? e TmNBL #9 e e e o e o o e = - —;
2 140 HGTD Preliminary 2_5*1015Neq/cm2{ P 4fC + E
o E - ] o | F A 1
5 " E - HGTD Prel E
o 12()E - . - g i reliminary E
£ 100> b, E S 251 o3
o “ ; g o ©
- + - O M :
w0 30PS + i 3 v 3
= = = = 1E #ﬁ E
20t E 0.5F- R =
oo b by by b by s b by Iy v 007 F .
o e by b b b e b v by g

BOO 250 300 350 400 450 500 550 600 650 900 550 300 350 400 450 500 550 600

Bias Voltage [V] Bias Voltage /V 28



HGTD sensor R&D at IHEP

+

Capacitance [F]

IHEP-IME sensors

IHEP & Institute of micro-electronics (IME) LGAD sensor

+ |HEP team designed and IME fabricated the 15t prototype this
September.

+ Depletion voltage close to design value ( 4 doping design)

Good time resolution (30-40ps) and high charge collection
(20-30 fC)

Will measure irradiation hardness and design full size sensor

Capacitance vs voltage 100
(4 doping design) __, i AV
4e-10 80k o --©- WB-1V single
; 8 - WE-IV 2x2
; g &
60
R 8.k 50ps
2e-10 2 [ o _____ .-@r_. ____________________
40
' - ®F Time resolution before irradiation
Reverse Voltage [V] .
o

See Kewei Wu's talk 0 100 200 300
Reverse Voltage [V]
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Fast readout ASIC R&D

+

Fast readout ASIC (ALTIROC) R&D is one of
the keys for HGTD

* Time resolution is better than 10ps

» Radiation hardness: >200MRad

+ Status: Small prototype (ALTIROC1) under test;
Full-size ASICin 2021

IHEP/NJU developed full-size ASIC emulator

* Study of the communication between ALTIROC
emulator and FELIX DAQ system started

IHEP contributed to irradiation study of
ALTIROC1_v3

Schematic of ALTIROC

"\ Cd=2pF, LGAD signal G=20

| \ Vout_pa

-t |

%HI

Detector |
@

| |
Preamplifier

40 Mhz Clock (STOP)

ASIC emulator

Arming / ToT
Discriminator

Hit Flag

>

TOT TDC
Range =20 ns
Bin =40 ps

SRAM
Local |
FIFO

>
Laashd

TOATDC
Range =2.5ns
Bin = 20 ps

X ray machine in IHEP
For ASIC irradiation study

30



HGTD Module R&D at IHEP

+  IHEP performed 2 rounds of prototyping of mini-modules (6.5x6.5mm?)

Time resolution
~46ps in beam test

e P
E Before Correction: ,=58.3 + 1.6 ps E
250— —
C After Correction: o, = 46.3 £+ 1.4 ps |
- ATLAS HGTD E
200: Test Beam ]
r November 2019 ]
v i3 150 -
! 100 3
ilmhuum\i_-l!—'“" 501 -
PR pry, nac o F . .
I i 11 kit ]

QOO -300 -200 -100 0 100 200 300 400

+ Alternative module design with full bump bonding

A(TOAL_ ) ps]

M

* Avoid wire bonding, simplify the assembly process, more robust

Baseline module design

Capacitors  Resistors Wire bonding
for}y
- B

Wire bondi
ire bonding ~— Flex PCB Asse'mbling|with
insulating glue

Sensor

000000000000 O®O® O 5umphonding

See Zhijun Liang’s talk

Alternative module design
Step PCB IC Substrate

Precision of \

PCB
thickness :
NN 8 06000000000

Prefer to use Aele

Bump size

Cooling Plate




Peripheral electronics and DAQ

4+  IHEP/NJU are leading the Peripheral board (PEB) design

* Proposed rigid board + flexible PCB design - Became baseline

4+  IHEP is leading HGTD DAQ, group

* Design the data format for up/down link

Peripheral Electronics

12C slow control

Trigger, clock, fast commands

A A

Beies
FLEX e e

Main data stream, Monitoring

Luminosity data stream @40 MHz

yy

Peripheral board rigid-flexible PCB design S —

Fpc connector array B

SN FEE BN EENE B EETE .
______________________________________|
f ]
2 layers FPC 1

m% N
<2.4mm .
Golden finger P
' /E Rigid-flex F —

|
_1_" e
- 196mm > 260mm > e

flex part Rigid part 32




USTC HGTD activities overview

e Sensor design and “USTC-1" LGAD performance
* Beta scope TCT system

e Studies of large-area HPK prototype sensors

* ALTIROC1 test

e Software and performance
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Sensor design and “USTC-1” performance

4+  USTC-1 prototype designed at USTC and fabricated at IME
* 6 splits, including one with Carbon doping

Wafer |Designed VBD [V] |GL.Energy |GL.Dose Implantation
wi 165 Medium Medium B

w2 165 Medium Medium B

w3 150 Low High B

w4 180 High Low B

W5 265 Medium Low B

wWe 165 Medium Medium B+C

4+  Promising results from first measurements

4+  Measure time resolution and charge collection with Sr90 beta source
Charge collection

Chargel[fC]

= 2N W oW
o o o o G & &
I'Wl‘I\If"l"I\I\I[I'WI‘II\I['IWI

o

4} USTC W5-Beta source

IBO -

PR
200

Bias[V]

Time Resolution with

160

140 | o OuUSTC W5
120 | ©HPK 3.1
"]
2400 ¢
5
S 80 & . ;
S 0 L See Xiao Yang’s talk
& oo

40 | 8 oo

20 r
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Beta-scope TCT at USTC

stage amplification
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Studies of large-array HPK sensors at USTC

Leakage Current [A]

Developed I-V, C-V measurement system with probe cards for 5x5 and 15x15 arrays

Studied the effects of floating guarding/floating pads: punch-through effect important to

explain the different results obtained from different labs

Study in progress: the implication of sparse mal-functioning pads in a large array for detector

operations
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ALTIROC ASIC test at L

STC

 Designed an ASIC test system

e “Re-discovered” the known issues of
ALTIROC1_v2 chips

e Testing of ALTIROC1_v3 chipsin progress
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- PLL Power
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Software and Performance Studies at USTC

+ +

Implemented the digitization in the HGTD simulation

Implemented the 3-ring layout in the simulation

Checked the resolution corresponding to the new

replacement plans

Time resolution vs radius

n Pertrack
424 3& 36 34 3,2 3 2.8
sof ATLAS Full Simulation Internal —®— 0fo™ —— 20007 |
~¥— 1000 fb"! -&- 2001fb!

Muons, p; = 45 GeV
HGTD
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B
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Studied the expected enhancement to lepton
isolation by the HGTD detector

Continuing to contribute to the HGTD software
and performance studies

See Tao Wang’s talk
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Conclusions

e Challenging to maintain or improve the performance in very dense
environment with pileup up to 200

* Chinese clusters have made and are continuing to make significant
contributions to main upgrade projects

— All-silicon ITk with extended coverage to improve the tracking performance
— HGTD to mitigate pile-up effects

— Muon detector (Trigger system upgrade to keep lower trigger threshold)

* Expecting good detector performance as reimbursement of big efforts
we make
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Backup
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HGTD

O The technology chosen for the HGTD sensors is Low Gain Avalanche Detectors (LGAD)

U n-on-p silicon detectors containing a extra highly-doped p-layer below the n-p junction to create a high
field which causes internal gain

] aninitial current is created from the drift of the electrons and holes in the silicon

L When the electrons reach the amplification region, new electron/hole pairs are created and the holes
drift towards the p* region and generate a large current

Cathode

N Ring 140 - Cdet = 2 pF
£ 120 1
E #Gain = 20
Avalanche ; 100 - Gain=15
t¢ Mo B o +Gain = 10
LL e g %Gain=5
Depletion | s g \\ Gain=1
Region U
—
40 A e \
~—— : Lo
m 20 1
- - 0 + : t
--- n > 0 100 200 300
A Thickness Imicronl
node . . . . . .
¢ Ring Current signals for different thicknesses Signal slope as function of thickness.

Cross section of an LGAD diode

An LGAD thickness of 50 microns has been adopted.
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The Trigger and DAQ Upgrade

= High instantaneous luminosity means higher data rates

= New designed trigger/DAQ system

= To cope with high rates while keeping low trigger thresholds
= The baseline architecture: a single-level hardware trigger + event filter

= 1 MHz trigger rate instead of 100 kHz

* Abig challenge for the detector readout

= 10 kHz output data rate instead of 1 kHz

= New readout electronics for all systems

= To cope with the increased occupancies and data rates
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HGTD sensor R&D at IHEP

4+ Low gain avalanche diode(LGAD) is developed for HGT

p-type Bulk

» Radiation hard, thin active layer (fast timing)

'ff_'_'_.
» High S/B, no self-triggering —

Prototype of IHEP-NDL sensors

4+ IHEP & Beijing Normal U. developed IHEP-NDL sensor

———

# Time resolution ~30ps at high fluence 2.5*10>Neq/cm? ||||M“|M‘”||M ,
+ Collected charge ~30 fC (~4fC) before (after) irradiation \L’ L JE

Collected charge before irradiation Time resolution before irradiation
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L M T L
DO HUAWE! Mate 30 Pro 50 100 150 200
rSensing Cine Camera | LEI /

* 8-ch FEE with Amp + discriminator developed at USTC

* Equipped onto both ends of One honeycomb readout panel

* Two identical glass RPC (1.4x0. 4m) tested together W|th FEE 0
cosmic ray

Test on two-end readout RPC

FEE 1

I -
NG
NRNE

hE
\\:

y [x100%]

250
Threshold [mV]

Threshold scan on FEE

~ . o o
> @ 15 53
=1 8 S =3
=3 S S S

)
2
3

!
4

3000

2500

1. Get the mean value of
distribution channel by 2
channel 1500

2. Shift the mean value of
every channel to 0.

1000

501

3

AP TTT IO IO TI T[T TITTTT

—-v—v—\“—v’_'r"!-!—!'——

o

2500

2000

1500

1000

500

NETTT T[T T T T[T T T [ TT T T[T TTT[T

0o 2 4 6 8 10 12 14 16 18

Hit Position [cm]

2000

Difference of hit
position

500

QT TT T TTTT [ TTT T [ TTTT[ TTTT[TTTT

o=

Difference of Hit Position [cm] Difference of Hit Position [cm]

8 channels

Side View

1200

1000

@
<3
3

!Entries

A <Fammets o 0T
Charnel 0 of 01
of dif o1

4 3 2 o0 1 2 3 4 5

Distribution of time difference [ns]

e Channel 3: 466 +

e Channel 5: 425+

Ch3: resolution = 0.824 +- 0.007

8 channels

44



Muon Spectrometer

A
12m

y
RPCs

EMS

Phase-I (happening)
New Small Wheel
Upgrades to the inner barrel
Resistive Plate Chambers

* NSW required to maintain low-p
lepton triggers at high rates

* reject ~90% of fake triggers

Phase-Il (2024 — 2026, mainly about trigger for Muon spectrometer)

= New inner RPC stations (USTC, SDU, SJTU)

= Monitored Drift Tubes information to be added at the hardware trigger (USTC)

= |nvestigating the addition of a high-n tagger (USTC)

45



Irradiations at INER

* Initial pre-irradiation studies were done with xrays at RAL

e All results shown here come from Co-60 irradiation at INER
in Taiwan

* Good relations with INER via ATLAS-Taiwan colleagues
* Good experience using the site in the past

* Attractively low price for full production pre-irradiation O(10k)
plus shipping

* Only negative is time for shipping and the export license

* Facility has a wall of Co-60 with a conveyor belt going
around it
* Irradiated to approx. 8 Mrad

* Drawer which we use allows boxes with dimensions of
40x30x7cm

* ABC130 pre-irradiation done as single 4” gel-pak

» ABCStar pre-irradiation done in waffle/gel-paks taped into
standard 28x19x6 cm box

¢ |n Taiwan just had to take box, put on conveyor belt and take off
when done

¢ Takes about 24 hrs for actual irradiation

Science and
Technology 4
Facilities Council
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CHESS2 — CMOS HV Evaluation for Strip Sensors

*  HV-CMOS desirable for high performance tracking in harsh collision environment

— High position resolution, low material budget and low cost

*  CHESS sensor initially developed to evaluate the HV-CMOS concept as an alternative solution to

the strip detector for ATLAS ITk upgrade.

Tests with laser and radioactive sources (Fe-55.

Sr-90)

Registered Hits

10°E
10°E

10

_Threshold scan with Fe-55

w== Noise Fit
=== Combined Fit
Opgise = 1.6 MV, AV oo =7 mV

Signal Endpoint
Noisd Endpoint

| IR R RN RN RS |

’ 6.715‘
Pixel Threshold [V]

L 1 '} l 1 il il il
0.695 0.7 0.705 0.71

* Published as a Hiroshima proceeding paper: NIMA 981 (2020) 164520
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Foreseen measurements

4+ Hybrid burn-in
4+ 36 hybrids at the same time
4+ 100 hours@ 40°C
4+  Waiting for the panel and crate

Oven

+30
CCCC
uuuuu

Pre TiC Confirmation Post TIC
characterisation

.A‘ =
Cold Box assembled in Warwick, will be
shipped to China after test

EEEEEEE
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TID “Bump”

- Pre-irradiated

14

. TID.peak”

' L4

4+  Higher current draw with radiation due to Total
lonizing Dose (TID)

TT

=

Current Increase Ratio
B
[4,]

4+  Leakage current resulting from two competing
mechanisms: radiation and thermal excitation.

+ Undesired capacity redundancy on powering and
cooling design

ot
w

'IIW["I[TII'[]W"H”
~

(=]

+ Cannot be easily eliminated by design

irradiation zapet

3 35
Dose [Mrad]
irradiation

4+  System level solution: chips pre-irradiated
to pass the TID peak.

thermal energy

4+ Quality Assurance: at batch level, TID measurements of pre-irradiated single chips with x-ray
machine (setup at IHEP)

{
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