Observation of several sources of CPV in $B^+ \rightarrow \pi^+ \pi^- \text{decays}$

Youhua Yang 2020/11/07

University of Chinese Academy of Sciences (中国科学院大学)

The 6th China LHC Physics Workshop (CLHCP 2020)

Motivations

- Suppressed in the Standard Model: penguin (loop) and tree diagrams of a similar magnitude
- b → s and b → d loop diagrams carry a different weak phase to those in the tree diagrams
- Different strong and weak phases can lead to large CP-violation in decay
- Intermediate resonances and short distance QCD effects result in a strong phase variation across the Dalitz plot

$$A_{CP} = \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$$
$$= \frac{2|A_1||A_2|\sin\delta\sin\phi}{|A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\delta\cos\phi}$$

Phys. Rev. D 98.030001 (2018)

 $B^+ \rightarrow \pi^+ \pi^- \pi^+$

- Data set (3 fb-1 of Run 1 LHCb data):
- Construct an explicit amplitude model for the decay
- Three approaches, that differ in the S-wave (spin-o) description
 - K-matrix: Single unitarity conserving model, with parameters from scattering data
 - Isobar: Individual hand-engineered components for each contribution, does not conserve unitarity
 - Quasi-model-independent: Fit for a magnitude and phase in bins of the phase-space

3

11/7/20

Yields

Simultaneous fit to the mass of B^+ and B^-

Amplitude analysis formalism Amplitude for B^+ and B^- signal decays is constructed as the sum over N resonant contributions and the S-wave component

•
$$A^{\pm}(m_{13}^2, m_{23}^2) = \sum_j^N c_j^{\pm} F_j(m_{13}^2, m_{23}^2) + A_S^{\pm}(m_{13}^2, m_{23}^2)$$

Typical model for resonances for a product of 3 terms: mass lineshape angular dependence and Blatt-Weisskopf barrier factors

• $F_j(m_{13}^2, m_{23}^2) = \mathbf{R}(\mathbf{m_{13}}) T(\vec{p}, \vec{q}) X(|\vec{p}| r_{BW}^P) X(|\vec{q}| r_{BW}^R)$

- P-wave: $\rho(770)^0$, $\omega(782)$, $\rho(1450)$ (Relativistic Breit-Wigner)
 - $\rho(770)^0$ lineshape modelled by Gounaris-Sakurai amplitude
 - $\rho(770)^0$ pole parameters free in nominal fit
 - $\rho(770)^0$ and , $\omega(782)$ bound together in a mixing amplitude
- D-wave: $f_2(1270)$ Relativistic Breit-Wigner
- F-wave: $\rho_3(1690)^0$ Relativistic Breit-Wigner

Isobar Model

- Analytical description of the S-wave
 - Form factors associated with physical contributions
 - Direct physical interpretation
- $\sigma/f_0(500)$ • $T(m) = \frac{1}{m_{\sigma}^2 - m^2}$
- $\pi\pi KK$ Rescattering
 - Phys.Rev. D 71 (2005) 074016
 - Ported to 3-body decays from 2-body interactions
 - Scattering phase respects unitarity and analyticity
 - Pair of mesons produced here will also appear in $B^+ \rightarrow K^+ \pi^+ K^-$
 - $A_{source}(m; \Delta^2_{\pi\pi}, \Delta^2_{KK}) = \frac{1}{1 + (m/\Delta^2_{\pi\pi})} \frac{1}{1 + (m/\Delta^2_{KK})}$
 - $T(m) = A_{source}(m) f_{rescattering}$
 - $f_{rescattering}(s) = \sqrt{1 \eta^2(s)} e^{2i\delta(s)}$
 - Inelasticity $\eta(s)$, and strong phase variation $\delta(s)$ from external data

The 'K-matrix' S-wave model

arXiv:hep-ph/0204328 (Anisovich & Sarantsev)

Analytical description of the S-wave

- Resonant contributions and their decay channels intertwined in a global form factor, inspired by conservation of unitarity in rescattering analyses n

Sum over resonance poles

$$\mathcal{F}_u = \sum_{v=1}^{n} [I - i\hat{K}\rho]_{uv}^{-1} \cdot \hat{P}_v$$

- $\widehat{K}_{\mu\nu}$ (fixed): K-matrix fixed from external scattering data
- ρ_{μ} : Amount of phase space available to decay channel
- \hat{P}_{ν} : Production vector comprised of mass poles and non-resonant

$$\hat{P}_{v}(s) = \sum_{\alpha=1}^{N} \frac{\beta_{\alpha} g_{v}^{(\alpha)}}{m_{\alpha}^{2} - s} + f_{v}^{\text{prod}} \frac{m_{0}^{2} - s_{0}^{\text{prod}}}{s - s_{0}^{\text{prod}}}$$

• Pole i: $f_0(500), f_0(980), f_0(1370), f_0(1500), f_0(1710)$

Parameters: Phys. Rev. D78 (2008) 034023, arXiv:0804.2089 Data: Eur. Phys. J. A16 (2003) 229, arXiv:hep-ph/0204328. S_o^{prod} : Phys. Lett. B585 (2004) 200, arXiv:hep-ex/0312040

Poles

	-					
α	m_{lpha}	$g_1^{lpha}[\pi\pi]$	$g_2^{\alpha}[K\overline{K}]$	$g_3^{\alpha}[4\pi]$	$g_4^{lpha}[\eta\eta]$	$g_5^{lpha}[\eta\eta']$
1	0.65100	0.22889	-0.55377	0.00000	-0.39899	-0.34639
2	1.20360	0.94128	0.55095	0.00000	0.39065	0.31503
3	1.55817	0.36856	0.23888	0.55639	0.18340	0.18681
4	1.21000	0.33650	0.40907	0.85679	0.19906	-0.00984
5	1.82206	0.18171	-0.17558	-0.79658	-0.00355	0.22358
	J					
	s_0^{scatt}	f_{11}^{scatt}	f_{12}^{scatt}	f_{13}^{scatt}	f_{14}^{scatt}	f_{15}^{scatt}
	3.92637	0.23399	0.15044	-0.20545	0.32825	0.35412
	s_0^{prod}	m_0^2	S_{A0}			
	3.0	1.0	-0.15			

The K-matrix S-wave model

Arxiv: 1711.09854

• amplitude squared (showing the location of various resonance structures")

Channels

Couplings

Describes entire S-wave in a single model

QMI Model

- Numerical quasi-model-independent (QMI) description of the S-wave
- Divide phase space for equal number of events in each bin initially
- Free amplitude and phase in each bin for B^+ and B^-
- Test bin performance on large statistics pseudo-experiment generated from
 Isobar result
- Merge biased bins unable to reproduce Isobar S-wave with neighbor
- Settle on 13 bins below D0 veto, 4 above
- Amplitude and phase motion can vary rapidly within a bin particularly when crossing channel openings

Spline interpolation not appropriate

Fit result

11/7/20

Fit fractions

$$\mathcal{F}_{j} = \frac{\int_{\text{PhSp}} |A_{j}|^{2} + |\overline{A}_{j}|^{2} d\text{PhSp}}{\int_{\text{PhSp}} |\sum_{j} A_{j}|^{2} + |\sum_{j} \overline{A}_{j}|^{2} d\text{PhSp}}$$

CP asymmetries

$$A_{\rm CP}^{j} = \frac{|\overline{A}_{j}|^{2} - |A_{j}|^{2}}{|\overline{A}_{j}|^{2} + |A_{j}|^{2}}$$

Phys.Rev.D101(2020) 012006

CP conserving fit fractions

Component	Isobar	K-matrix	QMI
$ ho(770)^{0}$	$55.5 \ \pm 0.6 \ \pm 0.4 \ \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.01 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57\pm 0.10\pm 0.12\pm 0.12$
$f_2(1270)$	$9.0 \ \pm 0.3 \ \pm 0.7 \ \pm 1.4$	$9.3 \ \pm 0.4 \ \pm 0.6 \ \pm 2.4$	$9.6\ \pm 0.4\ \pm 0.7\ \pm 3.9$
$ ho(1450)^{0}$	$5.2 \pm 0.3 \pm 0.2 \pm 1.9$	$10.5 \ \pm 0.7 \ \pm 0.8 \ \pm 4.5$	$7.4 \pm 0.5 \pm 3.9 \pm 1.1$
$ ho_3(1690)^0$	$0.5\ \pm 0.1\ \pm 0.1\ \pm 0.3$	$1.5 \ \pm 0.1 \ \pm 0.1 \ \pm 0.4$	$1.0 \ \pm 0.1 \ \pm 0.5 \ \pm 0.1$
S-wave	$25.4 \ \pm 0.5 \ \pm 0.5 \ \pm 3.6$	$25.7 \ \pm 0.6 \ \pm 2.6 \ \pm 1.4$	$26.8\ \pm 0.7\ \pm 2.0\ \pm 1.0$

Direct CP asymmetries

Component	Isobar	K-matrix	QMI
$\rho(770)^{0}$	$+0.7 \pm \ 1.1 \pm \ 0.6 \pm \ 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm \ 1.7 \pm \ 2.3 \pm \ 1.6$
$\omega(782)$	$-4.8\pm~6.5\pm~1.3\pm~3.5$	$-6.2\pm$ $8.4\pm$ $5.6\pm$ 8.1	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm \ 6.1 \pm \ 1.5 \pm \ 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$\rho(1450)^{0}$	$-12.9 \pm \ 3.3 \pm \ 3.6 \pm 35.7$	$+9.0\pm \ \ 6.0\pm 10.8\pm 45.7$	$-15.5 \pm \ \ 7.3 \pm 14.3 \pm 32.2$
$ ho_3(1690)^0$	$-80.1 \pm 11.4 \pm 7.8 \pm 24.1$	$-35.7 \pm 10.8 \pm \ 8.5 \pm 35.9$	$-93.2 \pm \ \ 6.8 \pm \ \ 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 1.0 \pm 1.9$	$+15.8 \pm \ 2.6 \pm \ 2.1 \pm \ 6.9$	$+15.0 \pm \ 2.7 \pm \ 4.2 \pm \ 7.0$

First error: statistical, Second: systematic, Third: Model uncertainty

- Dominant contributions are $\pi\pi$ s-wave, $\rho^0(770)$, f₂(1270), $\rho \omega mixing$
- The three methods give a similar representation of the data.

Full Charmless Fit Projection

CP-violation observed in S-wave at low $m_{\pi\pi}$, S - P interference around the $\rho(770)$ pole and $f_2(1270)$

• Very little asymmetry in this region as a function of mass:

 $ho(770)^0$ regio n

Phys.Rev.D101(2020) 012006

$ho(770)^0$ regio

• Below and above the $ho(770)^0$ mass:

Almost perfect cancellation!

$ho(770)^0$ regio

- But why?
 - This region is dominated by slowly varying spin o, and the rapidly varying spin-1 $\rho(770)^0$
 - Interference term between these is $\sim \cos\theta_{hel}$, when projecting on mass (integrating over $\cos\theta_{hel}$) this term vanishes!

Phys.Rev.D101(2020) 012006

$f_2(1270)$ region

Phys.Rev.D101(2020) 012006

Very large asymmetry in this region, associated with the $f_2(1270)$, component, An A_{CP} of around 40% in all models

QMI

0.1 0.2 0.3 0.4

LHCb

0.5 0.6

 $x \pm \delta x$

One of the largest CP asymmetries ever observed!

 $\rho^3(1690)$ region

- K-matrix has the strongest $ho_3(1690)^0$ contribution
- Peaking at 1.0, ± 0.5 in helicity
- Amplitude significant due to unique helicity structure around interference effects

S-wave model projections

Stat. {

• CP violation is pretty evident here

Phys.Rev.D101(2020) 012006

Summary

- Observations of large CP violation, and the first observation of CP violation in the interference between resonances in the $B^+ \rightarrow \pi^+ \pi^- \pi^+$ decay
- 3 different kinds of CP violation observed for the first time
 - In the S-wave at low $m_{\pi\pi}$
 - In S P interference around the ho(770) pole
 - In the $f_2(1270)$
- The CP violation effect is now associated to resonances rather than to integrated or localized regions of the Dalitz plot.
- Paper can be found
 - Phys.Rev.D101(2020) 012006 (arXiv:1909.05212v3)
 - Phys.Rev.L 124(2020) 031801 (arXiv:1909.05211v2)

Thank you for your attention!

backup

Efficiencies and Backgrounds

CLHCP 2020