Novel method to reliably determine the photon helicity in $b \rightarrow s\gamma$

Zhen-Xing Zhao Inner Mongolia University

In collaboration with Wei Wang, Fu-Sheng Yu WYZ: Phys.Rev.Lett. 125 (2020) 5, 051802

@ 6th China LHC Physics Workshop

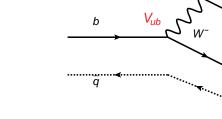
Outline

- Heavy Flavor Physics
- \triangleright Photon polarization in $b \to s\gamma$: $B \to K_1(→ Kππ)\gamma$
- Model-independent extraction using $D \to K_1(\to K\pi\pi)e^+\nu$
- Summary

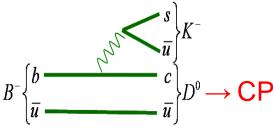
Heavy Flavor Physics

Heavy Flavor Bottom Physics

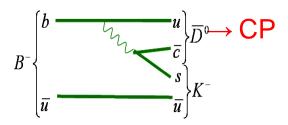
Extract the SM parameters:
Vub, Vcb, Weak Phases

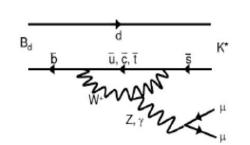


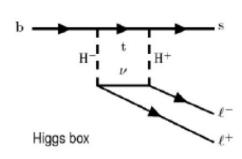
> Test SM: unitary triangle



> Hunt for NP: Rare Decays



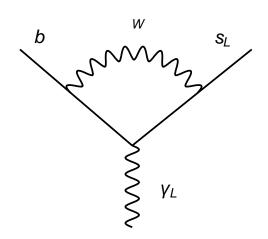




Photon polarization in
$$b \to s\gamma$$
:
 $B \to K_1(\to K\pi\pi)\gamma$

Photon polarization of $b \rightarrow s\gamma$

- An unique sensitivity to BSM with right-handed couplings
- Never been measured at a high precision: an important challenge for LHCb (and its upgrade) and Belle II



$$\mathcal{H}_{\text{eff}}^{\text{SM}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* C_{7\gamma} O_{7\gamma}$$

$$O_{7\gamma} = \frac{em_b}{16\pi^2} \bar{s} \sigma_{\mu\nu} \frac{1+\gamma_5}{2} b F^{\mu\nu}$$

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (C_{7L} O_{7L} + C_{7R} O_{7R})$$

$$O_{7L,R} = \frac{em_b}{16\pi^2} \bar{s}\sigma_{\mu\nu} \frac{1 \pm \gamma_5}{2} bF^{\mu\nu}$$

SM

New Physics

How do we measure the polarization?

> Time-dependent measurements:

$$\checkmark B_d \to K_S \pi^0 \gamma$$
 $\checkmark B_d \to K_S \pi^+ \pi^- \gamma$
 $\checkmark B_S \to K^+ K^- \gamma$

- > Angular distribution:
 - ✓ Baryonic decays: $\Lambda_b \to \Lambda \gamma$ request to the polarization of Λ_b or Λ
 - $\checkmark B \rightarrow K_{res}(\rightarrow K\pi\pi)\gamma$

Photon polarization of $B \to K_1 (\to K\pi\pi)\gamma$

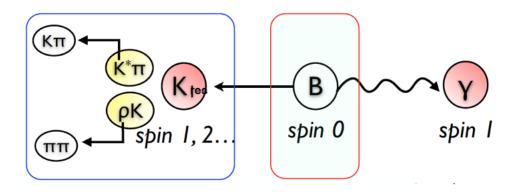
$$\lambda_{\gamma} \equiv \frac{|\mathcal{A}(\bar{B} \to \bar{K}_{1R}\gamma_{R})|^{2} - |\mathcal{A}(\bar{B} \to \bar{K}_{1L}\gamma_{L})|^{2}}{|\mathcal{A}(\bar{B} \to \bar{K}_{1R}\gamma_{R})|^{2} + |\mathcal{A}(\bar{B} \to \bar{K}_{1L}\gamma_{L})|^{2}}$$
$$\simeq \frac{|C_{7R,NP}|^{2} - |C_{7L,SM}|^{2}}{|C_{7R,NP}|^{2} + |C_{7L,SM}|^{2}}$$

In the SM, $\;\lambda_{\gamma}\simeq -1$

Angular distribution method

Gronau, Grossman, Pirjol, Ryd PRL88('01)

- Photon polarization
- = Recoiling K_1 polarization
- => measure it from K_1 decay angular distribution



K₁(1270)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1272\pm7$ MeV $^{[\prime]}$ Full width $\Gamma=90\pm20$ MeV $^{[\prime]}$

K₁(1270) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\rho$	(42 ±6)%	46
$K_0^*(1430)\pi$	$(28 \pm 4)\%$	†
$K^{*}(892)\pi$	$(16 \pm 5)\%$	302
$K \omega$	$(11.0\pm2.0)~\%$	†
$K f_0(1370)$	$(3.0\pm2.0)\%$	†
γK^0	seen	539

Up-down asymmetry for K_1

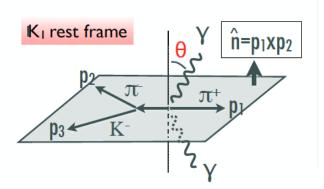
Angular distribution:

Gronau, Grossman, Pirjol, Ryd PRL88('01)

$$\frac{d\Gamma_{K_1\gamma}}{d\cos\theta_K} = \frac{|A|^2|\vec{J}|^2}{4} \times \left[1 + \cos^2\theta_K + 2\lambda_\gamma\cos\theta_K \frac{\mathrm{Im}[\vec{n}\cdot(\vec{J}\times\vec{J}^*)]}{|\vec{J}|^2}\right].$$

Up-down asymmetry for K1

$$\mathcal{A}_{\text{UD}} \equiv \frac{\left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\Gamma(B \to K_{1}\gamma)}{d\cos\theta_{K}}}{\left[\int_{0}^{1} + \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\Gamma(B \to K_{1}\gamma)}{d\cos\theta_{K}}}$$
$$= \lambda_{\gamma} \frac{3}{4} \frac{\text{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^{*})]}{|\vec{J}|^{2}}$$



To measure λ_{γ} , we need to know *the decay factor*

LHCb result on up-down asymmetry

LHCb PRL ('14)

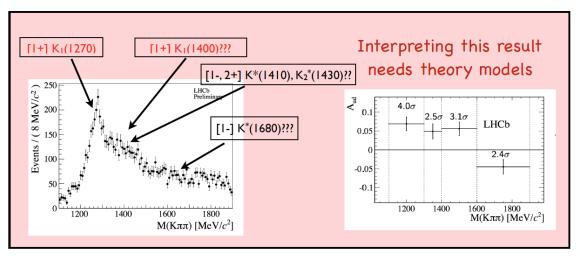
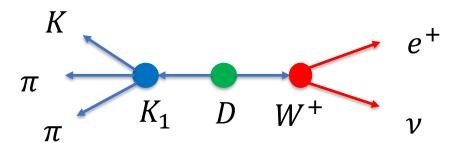


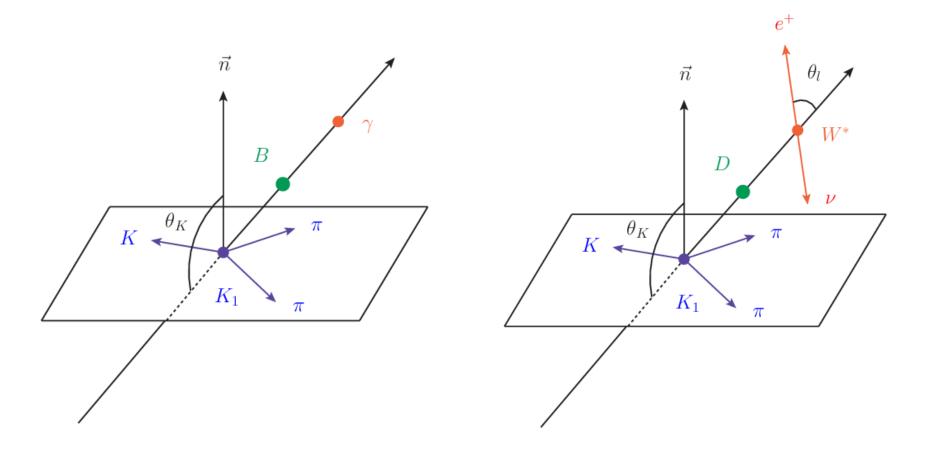
TABLE I. Legendre coefficients obtained from fits to the normalized background-subtracted $\cos \hat{\theta}$ distribution in the four $K^+\pi^-\pi^+$ mass intervals of interest. The up-down asymmetries are obtained from Eq. (4). The quoted uncertainties contain statistical and systematic contributions. The $K^+\pi^-\pi^+$ mass ranges are indicated in GeV/ c^2 and all the parameters are expressed in units of 10^{-2} . The covariance matrices are given in Ref. [22].

	[1.1,1.3]	[1.3,1.4]	[1.4,1.6]	[1.6,1.9]
c_1	6.3 ± 1.7	5.4 ± 2.0	4.3 ± 1.9	-4.6 ± 1.8
c_2	31.6 ± 2.2	27.0 ± 2.6	43.1 ± 2.3	28.0 ± 2.3
c_3	-2.1 ± 2.6	2.0 ± 3.1	-5.2 ± 2.8	-0.6 ± 2.7
c_4	3.0 ± 3.0	6.8 ± 3.6	8.1 ± 3.1	-6.2 ± 3.2
$\mathcal{A}_{\mathrm{ud}}$	6.9 ± 1.7	4.9 ± 2.0	5.6 ± 1.8	-4.5 ± 1.9

Model-independent extraction using $D \to K_1 (\to K\pi\pi) e^+ \nu$



$B \to K_1(K\pi\pi)\gamma \text{ vs } D \to K_1(K\pi\pi)e^+\nu$



Polarization of γ : +, -

Polarization of W: +, -, 0, t

t: timelike, $\epsilon^{\mu}(t) \sim p_{W}^{\mu}$

Angular Distribution of $D \to K_1(\to K\pi\pi)e^+\nu$

$$\frac{d\Gamma_{K_1e\nu_e}}{d\cos\theta_K d\cos\theta_l} = d_1[1 + \cos^2\theta_K \cos^2\theta_l] + d_2[1 + \cos^2\theta_K]\cos\theta_l + d_3\cos\theta_K[1 + \cos^2\theta_l] + d_4\cos\theta_K \cos\theta_l + d_5[\cos^2\theta_K + \cos^2\theta_l].$$

The angular coefficients are given as:

$$d_{1} = \frac{1}{2} |\vec{J}|^{2} (4c_{0}^{2} + c_{-}^{2} + c_{+}^{2}), d_{2} = -|\vec{J}|^{2} (c_{-}^{2} - c_{+}^{2}),$$

$$d_{3} = -\operatorname{Im} \left[\vec{n} \cdot (\vec{J} \times \vec{J}^{*}) \right] (c_{-}^{2} - c_{+}^{2}),$$

$$d_{4} = 2\operatorname{Im} \left[\vec{n} \cdot (\vec{J} \times \vec{J}^{*}) \right] (c_{-}^{2} + c_{+}^{2}),$$

$$d_{5} = -\frac{1}{2} |\vec{J}|^{2} (4c_{0}^{2} - c_{-}^{2} - c_{+}^{2}).$$

Up-down asymmetries

$$D \to K_1(\to K\pi\pi)e^+\nu$$

$$\mathcal{A}'_{\text{UD}} \equiv \frac{\left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_K \frac{d\Gamma_{K_1e\nu_e}}{d\cos\theta_K}}{\left[\int_0^1 - \int_{-1}^0\right] d\cos\theta_l \frac{d\Gamma_{K_1e\nu_e}}{d\cos\theta_l}}$$

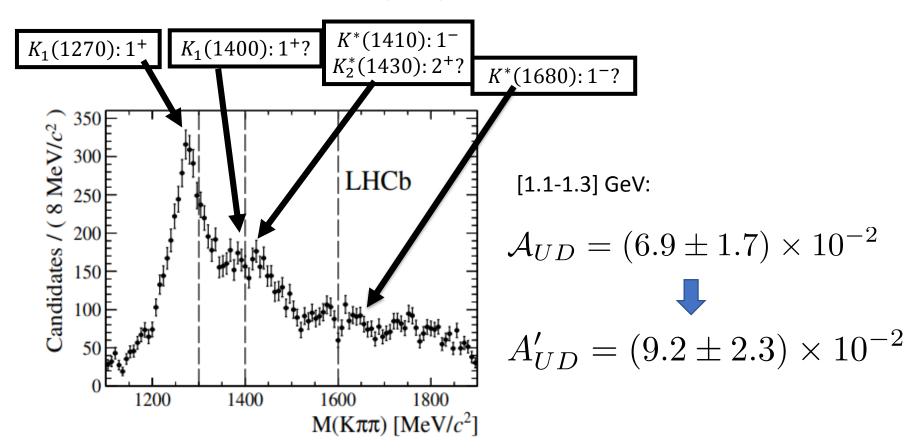
$$\mathcal{A}'_{\mathrm{UD}} = \frac{\mathrm{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^*)]}{|\vec{J}|^2}$$

$$B \to K_1(\to K\pi\pi)\gamma$$

$$\mathcal{A}_{UD} \equiv \frac{\left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\hat{\Gamma}_{K_{1}\gamma}}{d\cos\theta_{K}}}{\left[\int_{0}^{1} + \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\hat{\Gamma}_{K_{1}\gamma}}{d\cos\theta_{K}}}$$
$$= \lambda_{\gamma} \frac{3}{4} \frac{\operatorname{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^{*})]}{|\vec{J}|^{2}}$$

Prospect at BESIII & BelleII

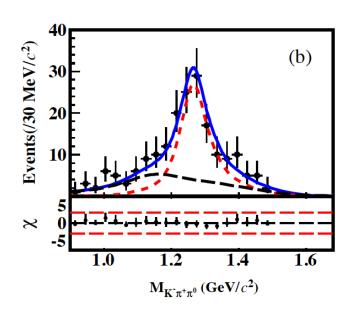
LHCb: PRL112.161801(2014)



A significant deviation from the above value would be a clear signal for new physics beyond SM.

$D \to K_1 (\to K\pi\pi) e^+ \nu$ from BESIII

BESIII: 1907.11370



$$\mathcal{B}(D^+ \to \overline{K}_1^0 e^+ \nu) = (2.3 \pm 0.26 \pm 0.18 \pm 0.25) \times 10^{-3}.$$

BESIII, BelleII, LHCb, Super Tau-Charm, CEPC in future?

Summary

- ➤ Heavy Flavor Physics: indirect search for NP
- Photon polarization in $b \rightarrow s\gamma$: unique to probe right-handed couplings
- \triangleright Model-independent extraction using $D \to K_1(\to K\pi\pi)e^+\nu$
 - ✓ Hadron inputs
 - ✓ Photon polarization in a model-independent way: NP?
 - ✓ BESIII, BelleII, LHCb, Super Tau-Charm, CEPC in future?

Thank you very much!

Backup

Including more K_J resonances

The angular distribution for $D \to K_{res}(\to K\pi\pi)e^+\nu$

$$\frac{d\hat{\Gamma}}{d\cos\theta_K d\cos\theta_l} = \sum_{K_J = K_1, K_1^*, K_2, K_{12}^I} \frac{d\hat{\Gamma}_{K_J l \nu}}{d\cos\theta_K d\cos\theta_l}$$

ightharpoonup For $K^*(1410)$

$$\frac{d\hat{\Gamma}_{K_1^* l \nu}}{d\cos\theta_K d\cos\theta_l} = (|c_+''|^2 + |c_-''|^2)\sin^2\theta_K (1 + \cos^2\theta_l)
+2(|c_+''|^2 - |c_-''|^2)\sin^2\theta_K \cos\theta_l + 4|c_0''|^2\cos^2\theta_K \sin^2\theta_l$$

Including more K_J resonances

$$\text{For } K_{2}^{*}(1430) \qquad \frac{d\Gamma_{K_{2}l\nu}}{d\cos\theta_{K}d\cos\theta_{l}} = |c'_{0}|^{2} \frac{3}{2}\sin^{2}(2\theta_{K})\sin^{2}\theta_{l}|\vec{K}|^{2}$$

$$+ 2|c'_{1}|^{2}\cos^{4}\frac{\theta_{l}}{2}\left\{|\vec{K}|^{2}(\cos^{2}\theta_{K} + \cos^{2}2\theta_{K})\right.$$

$$+ 2\cos\theta_{K}\cos2\theta_{K}\text{Im}[\vec{n}\cdot(\vec{K}\times\vec{K}^{*})]\right\}$$

$$+ 2|c'_{-1}|^{2}\sin^{4}\frac{\theta_{l}}{2}\left\{|\vec{K}|^{2}(\cos^{2}\theta_{K} + \cos^{2}2\theta_{K})\right.$$

$$- 2\cos\theta_{K}\cos2\theta_{K}\text{Im}[\vec{n}\cdot(\vec{K}\times\vec{K}^{*})]\right\}$$

$\succ K_1 - K_2$ interference

$$\frac{d\hat{\Gamma}_{K_{12}^{I}l\nu}}{d\cos\theta_{K}d\cos\theta_{l}}$$

$$= -4\sqrt{3}\sin^{2}(\theta_{K})\cos\theta_{K}\sin^{2}\theta_{l}\operatorname{Re}[c_{0}(c'_{0})^{*}\vec{J}\cdot\vec{K}^{*}]$$

$$-8\cos^{4}\frac{\theta_{l}}{2}\left\{\frac{1}{2}(3\cos^{2}\theta_{K}-1)\operatorname{Im}[c_{+}(c'_{+})^{*}\vec{n}\cdot(\vec{J}\times\vec{K}^{*})]\right\}$$

$$+\cos^{3}\theta_{K}\operatorname{Re}[c_{1}(c'_{1})^{*}*(\vec{J}\cdot\vec{K}^{*})]\right\}$$

$$-8\sin^{4}\frac{\theta_{l}}{2}\left\{\frac{1}{2}(1-3\cos^{2}\theta_{K})\operatorname{Im}[c_{-}(c'_{-})^{*}\vec{n}\cdot(\vec{J}\times\vec{K}^{*})]\right\}$$

$$+\cos^{3}\theta_{K}\operatorname{Re}[c_{-1}(c'_{-1})^{*}(\vec{J}\cdot\vec{K}^{*})]\right\}.$$

22